Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MAGMA ; 36(2): 159-173, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37081247

RESUMO

The 9.4 T scanner in Maastricht is a whole-body magnet with head gradients and parallel RF transmit capability. At the time of the design, it was conceptualized to be one of the best fMRI scanners in the world, but it has also been used for anatomical and diffusion imaging. 9.4 T offers increases in sensitivity and contrast, but the technical ultra-high field (UHF) challenges, such as field inhomogeneities and constraints set by RF power deposition, are exacerbated compared to 7 T. This article reviews some of the 9.4 T work done in Maastricht. Functional imaging experiments included blood oxygenation level-dependent (BOLD) and blood-volume weighted (VASO) fMRI using different readouts. BOLD benefits from shorter T2* at 9.4 T while VASO from longer T1. We show examples of both ex vivo and in vivo anatomical imaging. For many applications, pTx and optimized coils are essential to harness the full potential of 9.4 T. Our experience shows that, while considerable effort was required compared to our 7 T scanner, we could obtain high-quality anatomical and functional data, which illustrates the potential of MR acquisitions at even higher field strengths. The practical challenges of working with a relatively unique system are also discussed.


Assuntos
Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos
2.
Magn Reson Med ; 88(1): 292-308, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344611

RESUMO

PURPOSE: Rapid acquisition scheme and parameter estimation method are proposed to acquire distortion-free spin- and stimulated-echo signals and combine the signals with a physics-driven unsupervised network to estimate T1 , T2 , and proton density (M0 ) parameter maps, along with B0 and B1 information from the acquired signals. THEORY AND METHODS: An imaging sequence with three 90° RF pulses is utilized to acquire spin- and stimulated-echo signals. We utilize blip-up/-down acquisition to eliminate geometric distortion incurred by the effects of B0 inhomogeneity on rapid EPI acquisitions. For multislice imaging, echo-shifting is applied to utilize dead time between the second and third RF pulses to encode information from additional slice positions. To estimate parameter maps from the spin- and stimulated-echo signals with high fidelity, 2 estimation methods, analytic fitting and a novel unsupervised deep neural network method, are developed. RESULTS: The proposed acquisition provided distortion-free T1 , T2 , relative proton density (M0), B0 , and B1 maps with high fidelity both in phantom and in vivo brain experiments. From the rapidly acquired spin- and stimulated-echo signals, analytic fitting and the network-based method were able to estimate T1 , T2 , M0 , B0 , and B1 maps with high accuracy. Network estimates demonstrated noise robustness owing to the fact that the convolutional layers take information into account from spatially adjacent voxels. CONCLUSION: The proposed acquisition/reconstruction technique enabled whole-brain acquisition of coregistered, distortion-free, T1 , T2 , M0 , B0 , and B1 maps at 1 × 1 × 5 mm3 resolution in 50 s. The proposed unsupervised neural network provided noise-robust parameter estimates from this rapid acquisition.


Assuntos
Imagem Ecoplanar , Prótons , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Imagens de Fantasmas
3.
Front Neurosci ; 17: 1133086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694109

RESUMO

The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, ß1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted ß1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for ß1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.

5.
Front Neurosci ; 15: 674719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290579

RESUMO

G-ratio weighted imaging is a non-invasive, in-vivo MRI-based technique that aims at estimating an aggregated measure of relative myelination of axons across the entire brain white matter. The MR g-ratio and its constituents (axonal and myelin volume fraction) are more specific to the tissue microstructure than conventional MRI metrics targeting either the myelin or axonal compartment. To calculate the MR g-ratio, an MRI-based myelin-mapping technique is combined with an axon-sensitive MR technique (such as diffusion MRI). Correction for radio-frequency transmit (B1+) field inhomogeneities is crucial for myelin mapping techniques such as magnetization transfer saturation. Here we assessed the effect of B1+ correction on g-ratio weighted imaging. To this end, the B1+ field was measured and the B1+ corrected MR g-ratio was used as the reference in a Bland-Altman analysis. We found a substantial bias (≈-89%) and error (≈37%) relative to the dynamic range of g-ratio values in the white matter if the B1+ correction was not applied. Moreover, we tested the efficiency of a data-driven B1+ correction approach that was applied retrospectively without additional reference measurements. We found that it reduced the bias and error in the MR g-ratio by a factor of three. The data-driven correction is readily available in the open-source hMRI toolbox (www.hmri.info) which is embedded in the statistical parameter mapping (SPM) framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA