Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Radiology ; 310(1): e230764, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165245

RESUMO

While musculoskeletal imaging volumes are increasing, there is a relative shortage of subspecialized musculoskeletal radiologists to interpret the studies. Will artificial intelligence (AI) be the solution? For AI to be the solution, the wide implementation of AI-supported data acquisition methods in clinical practice requires establishing trusted and reliable results. This implementation will demand close collaboration between core AI researchers and clinical radiologists. Upon successful clinical implementation, a wide variety of AI-based tools can improve the musculoskeletal radiologist's workflow by triaging imaging examinations, helping with image interpretation, and decreasing the reporting time. Additional AI applications may also be helpful for business, education, and research purposes if successfully integrated into the daily practice of musculoskeletal radiology. The question is not whether AI will replace radiologists, but rather how musculoskeletal radiologists can take advantage of AI to enhance their expert capabilities.


Assuntos
Inteligência Artificial , Comércio , Humanos , Cintilografia , Exame Físico , Radiologistas
2.
Eur Radiol ; 34(8): 5228-5238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38244046

RESUMO

OBJECTIVE: To determine the inter-reader reliability and diagnostic performance of classification and severity scales of Neuropathy Score Reporting And Data System (NS-RADS) among readers of differing experience levels after limited teaching of the scoring system. METHODS: This is a multi-institutional, cross-sectional, retrospective study of MRI cases of proven peripheral neuropathy (PN) conditions. Thirty-two radiology readers with varying experience levels were recruited from different institutions. Each reader attended and received a structured presentation that described the NS-RADS classification system containing examples and reviewed published articles on this subject. The readers were then asked to perform NS-RADS scoring with recording of category, subcategory, and most likely diagnosis. Inter-reader agreements were evaluated by Conger's kappa and diagnostic accuracy was calculated for each reader as percent correct diagnosis. A linear mixed model was used to estimate and compare accuracy between trainees and attendings. RESULTS: Across all readers, agreement was good for NS-RADS category and moderate for subcategory. Inter-reader agreement of trainees was comparable to attendings (0.65 vs 0.65). Reader accuracy for attendings was 75% (95% CI 73%, 77%), slightly higher than for trainees (71% (69%, 72%), p = 0.0006) for nerves and comparable for muscles (attendings, 87.5% (95% CI 86.1-88.8%) and trainees, 86.6% (95% CI 85.2-87.9%), p = 0.4). NS-RADS accuracy was also higher than average accuracy for the most plausible diagnosis for attending radiologists at 67% (95% CI 63%, 71%) and for trainees at 65% (95% CI 60%, 69%) (p = 0.036). CONCLUSION: Non-expert radiologists interpreted PN conditions with good accuracy and moderate-to-good inter-reader reliability using the NS-RADS scoring system. CLINICAL RELEVANCE STATEMENT: The Neuropathy Score Reporting And Data System (NS-RADS) is an accurate and reliable MRI-based image scoring system for practical use for the diagnosis and grading of severity of peripheral neuromuscular disorders by both experienced and general radiologists. KEY POINTS: • The Neuropathy Score Reporting And Data System (NS-RADS) can be used effectively by non-expert radiologists to categorize peripheral neuropathy. • Across 32 different experience-level readers, the agreement was good for NS-RADS category and moderate for NS-RADS subcategory. • NS-RADS accuracy was higher than the average accuracy for the most plausible diagnosis for both attending radiologists and trainees (at 75%, 71% and 65%, 65%, respectively).


Assuntos
Imageamento por Ressonância Magnética , Variações Dependentes do Observador , Doenças do Sistema Nervoso Periférico , Humanos , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Transversais , Estudos Retrospectivos , Reprodutibilidade dos Testes , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Índice de Gravidade de Doença , Radiologistas , Competência Clínica , Radiologia/educação
3.
Eur Radiol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030374

RESUMO

OBJECTIVES: The revised European Society of Musculoskeletal Radiology (ESSR) consensus guidelines on soft tissue tumor imaging represent an update of 2015 after technical advancements, further insights into specific entities, and revised World Health Organization (2020) and AJCC (2017) classifications. This second of three papers covers algorithms once histology is confirmed: (1) standardized whole-body staging, (2) special algorithms for non-malignant entities, and (3) multiplicity, genetic tumor syndromes, and pitfalls. MATERIALS AND METHODS: A validated Delphi method based on peer-reviewed literature was used to derive consensus among a panel of 46 specialized musculoskeletal radiologists from 12 European countries. Statements that had undergone interdisciplinary revision were scored online by the level of agreement (0 to 10) during two iterative rounds, that could result in 'group consensus', 'group agreement', or 'lack of agreement'. RESULTS: The three sections contain 24 statements with comments. Group consensus was reached in 95.8% and group agreement in 4.2%. For whole-body staging, pulmonary MDCT should be performed in all high-grade sarcomas. Whole-body MRI is preferred for staging bone metastasis, with [18F]FDG-PET/CT as an alternative modality in PET-avid tumors. Patients with alveolar soft part sarcoma, clear cell sarcoma, and angiosarcoma should be screened for brain metastases. Special algorithms are recommended for entities such as rhabdomyosarcoma, extraskeletal Ewing sarcoma, myxoid liposarcoma, and neurofibromatosis type 1 associated malignant peripheral nerve sheath tumors. Satisfaction of search should be avoided in potential multiplicity. CONCLUSION: Standardized whole-body staging includes pulmonary MDCT in all high-grade sarcomas; entity-dependent modifications and specific algorithms are recommended for sarcomas and non-malignant soft tissue tumors. CLINICAL RELEVANCE STATEMENT: These updated ESSR soft tissue tumor imaging guidelines aim to provide support in decision-making, helping to avoid common pitfalls, by providing general and entity-specific algorithms, techniques, and reporting recommendations for whole-body staging in sarcoma and non-malignant soft tissue tumors. KEY POINTS: An early, accurate, diagnosis is crucial for the prognosis of patients with soft tissue tumors. These updated guidelines provide best practice expert consensus for standardized imaging algorithms, techniques, and reporting. Standardization can improve the comparability examinations and provide databases for large data analysis.

4.
Skeletal Radiol ; 53(9): 1799-1813, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38441617

RESUMO

Magnetic resonance imaging (MRI) is crucial for accurately diagnosing a wide spectrum of musculoskeletal conditions due to its superior soft tissue contrast resolution. However, the long acquisition times of traditional two-dimensional (2D) and three-dimensional (3D) fast and turbo spin-echo (TSE) pulse sequences can limit patient access and comfort. Recent technical advancements have introduced acceleration techniques that significantly reduce MRI times for musculoskeletal examinations. Key acceleration methods include parallel imaging (PI), simultaneous multi-slice acquisition (SMS), and compressed sensing (CS), enabling up to eightfold faster scans while maintaining image quality, resolution, and safety standards. These innovations now allow for 3- to 6-fold accelerated clinical musculoskeletal MRI exams, reducing scan times to 4 to 6 min for joints and spine imaging. Evolving deep learning-based image reconstruction promises even faster scans without compromising quality. Current research indicates that combining acceleration techniques, deep learning image reconstruction, and superresolution algorithms will eventually facilitate tenfold accelerated musculoskeletal MRI in routine clinical practice. Such rapid MRI protocols can drastically reduce scan times by 80-90% compared to conventional methods. Implementing these rapid imaging protocols does impact workflow, indirect costs, and workload for MRI technologists and radiologists, which requires careful management. However, the shift from conventional to accelerated, deep learning-based MRI enhances the value of musculoskeletal MRI by improving patient access and comfort and promoting sustainable imaging practices. This article offers a comprehensive overview of the technical aspects, benefits, and challenges of modern accelerated musculoskeletal MRI, guiding radiologists and researchers in this evolving field.


Assuntos
Imageamento por Ressonância Magnética , Doenças Musculoesqueléticas , Humanos , Imageamento por Ressonância Magnética/métodos , Doenças Musculoesqueléticas/diagnóstico por imagem , Sistema Musculoesquelético/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos
5.
Skeletal Radiol ; 53(2): 209-244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37566148

RESUMO

OBJECTIVE: Direct magnetic resonance arthrography (dMRA) is often considered the most accurate imaging modality for the evaluation of intra-articular structures, but utilization and performance vary widely without consensus. The purpose of this white paper is to develop consensus recommendations on behalf of the Society of Skeletal Radiology (SSR) based on published literature and expert opinion. MATERIALS AND METHODS: The Standards and Guidelines Committee of the SSR identified guidelines for utilization and performance of dMRA as an important topic for study and invited all SSR members with expertise and interest to volunteer for the white paper panel. This panel was tasked with determining an outline, reviewing the relevant literature, preparing a written document summarizing the issues and controversies, and providing recommendations. RESULTS: Twelve SSR members with expertise in dMRA formed the ad hoc white paper authorship committee. The published literature on dMRA was reviewed and summarized, focusing on clinical indications, technical considerations, safety, imaging protocols, complications, controversies, and gaps in knowledge. Recommendations for the utilization and performance of dMRA in the shoulder, elbow, wrist, hip, knee, and ankle/foot regions were developed in group consensus. CONCLUSION: Although direct MR arthrography has been previously used for a wide variety of clinical indications, the authorship panel recommends more selective application of this minimally invasive procedure. At present, direct MR arthrography remains an important procedure in the armamentarium of the musculoskeletal radiologist and is especially valuable when conventional MRI is indeterminant or results are discrepant with clinical evaluation.


Assuntos
Artrografia , Imageamento por Ressonância Magnética , Humanos , Artrografia/métodos , Radiografia , Imageamento por Ressonância Magnética/métodos , Ombro/diagnóstico por imagem , Punho
6.
Radiology ; 306(1): 6-19, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413131

RESUMO

This article provides a focused overview of emerging technology in musculoskeletal MRI and CT. These technological advances have primarily focused on decreasing examination times, obtaining higher quality images, providing more convenient and economical imaging alternatives, and improving patient safety through lower radiation doses. New MRI acceleration methods using deep learning and novel reconstruction algorithms can reduce scanning times while maintaining high image quality. New synthetic techniques are now available that provide multiple tissue contrasts from a limited amount of MRI and CT data. Modern low-field-strength MRI scanners can provide a more convenient and economical imaging alternative in clinical practice, while clinical 7.0-T scanners have the potential to maximize image quality. Three-dimensional MRI curved planar reformation and cinematic rendering can provide improved methods for image representation. Photon-counting detector CT can provide lower radiation doses, higher spatial resolution, greater tissue contrast, and reduced noise in comparison with currently used energy-integrating detector CT scanners. Technological advances have also been made in challenging areas of musculoskeletal imaging, including MR neurography, imaging around metal, and dual-energy CT. While the preliminary results of these emerging technologies have been encouraging, whether they result in higher diagnostic performance requires further investigation.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Tomógrafos Computadorizados , Tecnologia , Imagens de Fantasmas
7.
Radiology ; 306(3): e220134, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36318029

RESUMO

A 54-year-old woman presented with progressive right hip pain after hip arthroplasty 9 years earlier. The emerging role of metal artifact reduction MRI in the noninvasive diagnosis of infectious synovitis as the surrogate marker for periprosthetic hip joint infection and differentiation from other synovitis types is discussed.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Sinovite , Feminino , Humanos , Pessoa de Meia-Idade , Prótese de Quadril/efeitos adversos , Artefatos , Articulação do Quadril/diagnóstico por imagem , Imageamento por Ressonância Magnética , Sinovite/diagnóstico , Sinovite/cirurgia , Artroplastia de Quadril/efeitos adversos
8.
Radiology ; 308(2): e230531, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581501

RESUMO

Over the past decades, MRI has become increasingly important for diagnosing and longitudinally monitoring musculoskeletal disorders, with ongoing hardware and software improvements aiming to optimize image quality and speed. However, surging demand for musculoskeletal MRI and increased interest to provide more personalized care will necessitate a stronger emphasis on efficiency and specificity. Ongoing hardware developments include more powerful gradients, improvements in wide-bore magnet designs to maintain field homogeneity, and high-channel phased-array coils. There is also interest in low-field-strength magnets with inherently lower magnetic footprints and operational costs to accommodate global demand in middle- and low-income countries. Previous approaches to decrease acquisition times by means of conventional acceleration techniques (eg, parallel imaging or compressed sensing) are now largely overshadowed by deep learning reconstruction algorithms. It is expected that greater emphasis will be placed on improving synthetic MRI and MR fingerprinting approaches to shorten overall acquisition times while also addressing the demand of personalized care by simultaneously capturing microstructural information to provide greater detail of disease severity. Authors also anticipate increased research emphasis on metal artifact reduction techniques, bone imaging, and MR neurography to meet clinical needs.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Imageamento por Ressonância Magnética/métodos , Software , Algoritmos
9.
Radiology ; 308(2): e230344, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37606571

RESUMO

CT is one of the most widely used modalities for musculoskeletal imaging. Recent advancements in the field include the introduction of four-dimensional CT, which captures a CT image during motion; cone-beam CT, which uses flat-panel detectors to capture the lower extremities in weight-bearing mode; and dual-energy CT, which operates at two different x-ray potentials to improve the contrast resolution to facilitate the assessment of tissue material compositions such as tophaceous gout deposits and bone marrow edema. Most recently, photon-counting CT (PCCT) has been introduced. PCCT is a technique that uses photon-counting detectors to produce an image with higher spatial and contrast resolution than conventional multidetector CT systems. In addition, postprocessing techniques such as three-dimensional printing and cinematic rendering have used CT data to improve the generation of both physical and digital anatomic models. Last, advancements in the application of artificial intelligence to CT imaging have enabled the automatic evaluation of musculoskeletal pathologies. In this review, the authors discuss the current state of the above CT technologies, their respective advantages and disadvantages, and their projected future directions for various musculoskeletal applications.


Assuntos
Inteligência Artificial , Tomografia Computadorizada de Feixe Cônico , Humanos , Tomografia Computadorizada Quadridimensional , Extremidade Inferior , Movimento (Física)
10.
J Magn Reson Imaging ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37795927

RESUMO

MRI is an expensive and traditionally time-intensive modality in imaging. With the paradigm shift toward value-based healthcare, radiology departments must examine the entire MRI process cycle to identify opportunities to optimize efficiency and enhance value for patients. Digital tools such as "frictionless scheduling" prioritize patient preference and convenience, thereby delivering patient-centered care. Recent advances in conventional and deep learning-based accelerated image reconstruction methods have reduced image acquisition time to such a degree that so-called nongradient time now constitutes a major percentage of total room time. For this reason, architectural design strategies that reconfigure patient preparation processes and decrease the turnaround time between scans can substantially impact overall throughput while also improving patient comfort and privacy. Real-time informatics tools that provide an enterprise-wide overview of MRI workflow and Picture Archiving and Communication System (PACS)-integrated instant messaging can complement these efforts by offering transparent, situational data and facilitating communication between radiology team members. Finally, long-term investment in training, recruiting, and retaining a highly skilled technologist workforce is essential for building a pipeline and team of technologists committed to excellence. Here, we highlight various opportunities for optimizing MRI workflow and enhancing value by offering many of our own on-the-ground experiences and conclude by anticipating some of the future directions for process improvement and innovation in clinical MR imaging. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 1.

11.
Eur Radiol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062268

RESUMO

OBJECTIVES: Early, accurate diagnosis is crucial for the prognosis of patients with soft tissue sarcomas. To this end, standardization of imaging algorithms, technical requirements, and reporting is therefore a prerequisite. Since the first European Society of Musculoskeletal Radiology (ESSR) consensus in 2015, technical achievements, further insights into specific entities, and the revised WHO-classification (2020) and AJCC staging system (2017) made an update necessary. The guidelines are intended to support radiologists in their decision-making and contribute to interdisciplinary tumor board discussions. MATERIALS AND METHODS: A validated Delphi method based on peer-reviewed literature was used to derive consensus among a panel of 46 specialized musculoskeletal radiologists from 12 European countries. Statements were scored online by level of agreement (0 to 10) during two iterative rounds. Either "group consensus," "group agreement," or "lack of agreement" was achieved. RESULTS: Eight sections were defined that finally contained 145 statements with comments. Overall, group consensus was reached in 95.9%, and group agreement in 4.1%. This communication contains the first part consisting of the imaging algorithm for suspected soft tissue tumors, methods for local imaging, and the role of tumor centers. CONCLUSION: Ultrasound represents the initial triage imaging modality for accessible and small tumors. MRI is the modality of choice for the characterization and local staging of most soft tissue tumors. CT is indicated in special situations. In suspicious or likely malignant tumors, a specialist tumor center should be contacted for referral or teleradiologic second opinion. This should be done before performing a biopsy, without exception. CLINICAL RELEVANCE: The updated ESSR soft tissue tumor imaging guidelines aim to provide best practice expert consensus for standardized imaging, to support radiologists in their decision-making, and to improve examination comparability both in individual patients and in future studies on individualized strategies. KEY POINTS: • Ultrasound remains the best initial triage imaging modality for accessible and small suspected soft tissue tumors. • MRI is the modality of choice for the characterization and local staging of soft tissue tumors in most cases; CT is indicated in special situations. Suspicious or likely malignant tumors should undergo biopsy. • In patients with large, indeterminate or suspicious tumors, a tumor reference center should be contacted for referral or teleradiologic second opinion; this must be done before a biopsy.

12.
Eur Radiol ; 33(9): 6322-6338, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37191922

RESUMO

OBJECTIVES: The purpose of this agreement was to establish evidence-based consensus statements on imaging of distal radioulnar joint (DRUJ) instability and triangular fibrocartilage complex (TFCC) injuries by an expert group using the Delphi technique. METHODS: Nineteen hand surgeons developed a preliminary list of questions on DRUJ instability and TFCC injuries. Radiologists created statements based on the literature and the authors' clinical experience. Questions and statements were revised during three iterative Delphi rounds. Delphi panelists consisted of twenty-seven musculoskeletal radiologists. The panelists scored their degree of agreement to each statement on an 11-item numeric scale. Scores of "0," "5," and "10" reflected complete disagreement, indeterminate agreement, and complete agreement, respectively. Group consensus was defined as a score of "8" or higher for 80% or more of the panelists. RESULTS: Three of fourteen statements achieved group consensus in the first Delphi round and ten statements achieved group consensus in the second Delphi round. The third and final Delphi round was limited to the one question that did not achieve group consensus in the previous rounds. CONCLUSIONS: Delphi-based agreements suggest that CT with static axial slices in neutral rotation, pronation, and supination is the most useful and accurate imaging technique for the work-up of DRUJ instability. MRI is the most valuable technique in the diagnosis of TFCC lesions. The main indication for MR arthrography and CT arthrography are Palmer 1B foveal lesions of the TFCC. CLINICAL RELEVANCE STATEMENT: MRI is the method of choice for assessing TFCC lesions, with higher accuracy for central than peripheral abnormalities. The main indication for MR arthrography is the evaluation of TFCC foveal insertion lesions and peripheral non-Palmer injuries. KEY POINTS: • Conventional radiography should be the initial imaging technique in the assessment of DRUJ instability. CT with static axial slices in neutral rotation, pronation, and supination is the most accurate method for evaluating DRUJ instability. • MRI is the most useful technique in diagnosing soft-tissue injuries causing DRUJ instability, especially TFCC lesions. • The main indications for MR arthrography and CT arthrography are foveal lesions of the TFCC.


Assuntos
Instabilidade Articular , Fibrocartilagem Triangular , Traumatismos do Punho , Humanos , Fibrocartilagem Triangular/diagnóstico por imagem , Traumatismos do Punho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Instabilidade Articular/diagnóstico por imagem , Instabilidade Articular/cirurgia , Artrografia , Articulação do Punho/diagnóstico por imagem , Artroscopia/métodos
13.
AJR Am J Roentgenol ; 221(5): 661-672, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37255041

RESUMO

BACKGROUND. The utility of 3-T MRI for diagnosing joint disorders is established, but its performance for diagnosing abnormalities around arthroplasty implants is unclear. OBJECTIVE. The purpose of this study was to compare 1.5-T and 3-T compressed sensing slice encoding for metal artifact correction (SEMAC) MRI for diagnosing peri-prosthetic abnormalities around hip, knee, and ankle arthroplasty implants. METHODS. Forty-five participants (26 women, 19 men; mean age ± SD, 71 ± 14 years) with symptomatic lower extremity arthroplasty (hip, knee, and ankle, 15 each) prospectively underwent consecutive 1.5- and 3-T MRI examinations with intermediate-weighted (IW) and STIR compressed sensing SEMAC sequences. Using a Likert scale, three radiologists evaluated the presence or absence of periprosthetic abnormalities, including bone marrow edema-like signal, osteolysis, stress reaction/fracture, synovitis, and tendon abnormalities and collections; image quality; and visibility of anatomic structures. Statistical analysis included nonparametric comparison and interchangeability testing. RESULTS. For diagnosing periprosthetic abnormalities, 1.5-T and 3-T compressed sensing SEMAC MRI were interchangeable. Across all three joints, 3-T MRI had lower noise than 1.5-T MRI (median IW and STIR scores at 3 T vs 1.5 T, 4 and 4 [range, 2-5 and 3-5] vs 3 and 3 [range, 2-5 and 2-4]; p < .01 for both), sharper edges (median IW and STIR scores at 3 T vs 1.5 T, 4 and 4 [both ranges, 2-5] vs 3 and 3 [range, 2-4 and 2-5]; p < .02 and p < .05), and more effective metal artifact reduction (median IW and STIR scores at 3 T vs 1.5 T, 4 and 4 [range, 3-5 and 2-5] vs 4 and 4 [both ranges, 3-5]; p < .02 and p = .72). Agreement was moderate to substantial for image contrast (IW and STIR, 0.66 and 0.54 [95% CI, 0.41-0.91 and 0.29-0.80]; p = .58 and p = .16) and joint capsule visualization (IW and STIR, 0.57 and 0.70 [range, 0.32-0.81 and 0.51-0.89]; p = .16 and p = .19). The bone-implant interface was more visible at 1.5 T (median IW and STIR scores, 4 and 4 [both ranges, 2-5] at 1.5 T vs 3 and 3 [both ranges, 2-5] at 3 T; p = .08 and p = .58), but periprosthetic tissues had superior visibility at 3 T (IW and STIR, 4 and 4 [both ranges, 3-5] at 3 T vs 4 and 4 [ranges, 2-5 and 3-5] at 1.5 T; p = .07 and p = .19). CONCLUSION. Optimized 1.5-T and 3-T compressed sensing SEMAC MRI are interchangeable for diagnosing periprosthetic abnormalities, although metallic artifacts are larger at 3 T. CLINICAL IMPACT. With compressed sensing SEMAC MRI, lower extremity arthroplasty implants can be imaged at 3 T rather than 1.5 T.

14.
Skeletal Radiol ; 52(5): 951-965, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36006462

RESUMO

Common etiologies of low back pain include degenerative arthrosis and inflammatory arthropathy of the sacroiliac joints. The diagnostic workup revolves around identifying and confirming the sacroiliac joints as a pain generator. Diagnostic sacroiliac joint injections often serve as functional additions to the diagnostic workup through eliciting a pain response that tests the hypothesis that the sacroiliac joints do or do not contribute to the patient's pain syndrome. Therapeutic sacroiliac joint injections aim to provide medium- to long-term relief of symptoms and reduce inflammatory activity and, ultimately, irreversible structural damage. Ultrasonography, fluoroscopy, computed tomography, and magnetic resonance imaging (MRI) may be used to guide sacroiliac joint injections. The populations that may benefit most from MRI-guided sacroiliac joint procedures include children, adolescents, adults of childbearing age, and patients receiving serial injections due to the ability of interventional MRI to avoid radiation exposure. Most clinical wide-bore MRI systems can be used for MRI-guided sacroiliac joint injections. Turbo spin echo pulse sequences optimized for interventional needle display visualize the needle tip with an error margin of < 1 mm or less. Published success rates of intra-articular sacroiliac joint drug delivery with MRI guidance range between 87 and 100%. The time required for MR-guided sacroiliac joint injections in adults range between 23-35 min and 40 min in children. In this article, we describe techniques for MRI-guided sacroiliac joint injections, share our practice of incorporating interventional MRI in the care of patients with sacroiliac joint mediated pain, discuss the rationales, benefits, and limitations of interventional MRI, and conclude with future developments.


Assuntos
Dor Lombar , Articulação Sacroilíaca , Adolescente , Humanos , Adulto , Criança , Articulação Sacroilíaca/diagnóstico por imagem , Dor Lombar/diagnóstico por imagem , Dor Lombar/tratamento farmacológico , Agulhas , Injeções Intra-Articulares/métodos , Imageamento por Ressonância Magnética , Artralgia/tratamento farmacológico
15.
Skeletal Radiol ; 52(10): 1929-1947, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37495713

RESUMO

The T12 to S4 spinal nerves form the lumbosacral plexus in the retroperitoneum, providing sensory and motor innervation to the pelvis and lower extremities. The lumbosacral plexus has a wide range of anatomic variations and interchange of fibers between nerve anastomoses. Neuropathies of the lumbosacral plexus cause a broad spectrum of complex pelvic and lower extremity pain syndromes, which can be challenging to diagnose and treat successfully. In their workup, selective nerve blocks are employed to test the hypothesis that a lumbosacral plexus nerve contributes to a suspected pelvic and extremity pain syndrome, whereas therapeutic perineural injections aim to alleviate pain and paresthesia symptoms. While the sciatic and femoral nerves are large in caliber, the iliohypogastric and ilioinguinal, genitofemoral, lateral femoral cutaneous, anterior femoral cutaneous, posterior femoral cutaneous, obturator, and pudendal nerves are small, measuring a few millimeters in diameter and have a wide range of anatomic variants. Due to their minuteness, direct visualization of the smaller lumbosacral plexus branches can be difficult during selective nerve blocks, particularly in deeper pelvic locations or larger patients. In this setting, the high spatial and contrast resolution of interventional MR neurography guidance benefits nerve visualization and targeting, needle placement, and visualization of perineural injectant distribution, providing a highly accurate alternative to more commonly used ultrasonography, fluoroscopy, and computed tomography guidance for perineural injections. This article offers a practical guide for MR neurography-guided lumbosacral plexus perineural injections, including interventional setup, pulse sequence protocols, lumbosacral plexus MR neurography anatomy, anatomic variations, and injection targets.


Assuntos
Imageamento por Ressonância Magnética , Bloqueio Nervoso , Humanos , Imageamento por Ressonância Magnética/métodos , Plexo Lombossacral/diagnóstico por imagem , Bloqueio Nervoso/métodos , Extremidade Inferior , Dor
16.
Skeletal Radiol ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133670

RESUMO

The diagnosis of prosthetic joint infection (PJI) remains challenging, despite multiple available laboratory tests for both serum and synovial fluid analysis. The clinical symptoms of PJI are not always characteristic, particularly in the chronic phase, and there is often significant overlap in symptoms with non-infectious forms of arthroplasty failure. Further exacerbating this challenge is lack of a universally accepted definition for PJI, with publications from multiple professional societies citing different diagnostic criteria. While not included in many of the major societies' guidelines for diagnosis of PJI, diagnostic imaging can play an important role in the workup of suspected PJI. In this article, we will review an approach to diagnostic imaging modalities (radiography, ultrasound, CT, MRI) in the workup of suspected PJI, with special attention to the limitations and benefits of each modality. We will also discuss the role that image-guided interventions play in the workup of these patients, through ultrasound and fluoroscopically guided joint aspirations. While there is no standard imaging algorithm that can universally applied to all patients with suspected PJI, we will discuss a general approach to diagnostic imaging and image-guided intervention in this clinical scenario.

17.
Skeletal Radiol ; 52(11): 2225-2238, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36759367

RESUMO

Deep learning (DL) is one of the most exciting new areas in medical imaging. This article will provide a review of current applications of DL in osteoarthritis (OA) imaging, including methods used for cartilage lesion detection, OA diagnosis, cartilage segmentation, and OA risk assessment. DL techniques have been shown to have similar diagnostic performance as human readers for detecting and grading cartilage lesions within the knee on MRI. A variety of DL methods have been developed for detecting and grading the severity of knee OA and various features of knee OA on X-rays using standardized classification systems with diagnostic performance similar to human readers. Multiple DL approaches have been described for fully automated segmentation of cartilage and other knee tissues and have achieved higher segmentation accuracy than currently used methods with substantial reductions in segmentation times. Various DL models analyzing baseline X-rays and MRI have been developed for OA risk assessment. These models have shown high diagnostic performance for predicting a wide variety of OA outcomes, including the incidence and progression of radiographic knee OA, the presence and progression of knee pain, and future total knee replacement. The preliminary results of DL applications in OA imaging have been encouraging. However, many DL techniques require further technical refinement to maximize diagnostic performance. Furthermore, the generalizability of DL approaches needs to be further investigated in prospective studies using large image datasets acquired at different institutions with different imaging hardware before they can be implemented in clinical practice and research studies.


Assuntos
Cartilagem Articular , Aprendizado Profundo , Osteoartrite do Joelho , Humanos , Estudos Prospectivos , Cartilagem Articular/patologia , Articulação do Joelho/patologia , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Imageamento por Ressonância Magnética/métodos
18.
Skeletal Radiol ; 52(11): 2211-2224, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36907953

RESUMO

Accurately detecting and characterizing articular cartilage defects is critical in assessing patients with osteoarthritis. While radiography is the first-line imaging modality, magnetic resonance imaging (MRI) is the most accurate for the noninvasive assessment of articular cartilage. Multiple semiquantitative grading systems for cartilage lesions in MRI were developed. The Outerbridge and modified Noyes grading systems are commonly used in clinical practice and for research. Other useful grading systems were developed for research, many of which are joint-specific. Both two-dimensional (2D) and three-dimensional (3D) pulse sequences are used to assess cartilage morphology and biochemical composition. MRI techniques for morphological assessment of articular cartilage can be categorized into 2D and 3D FSE/TSE spin-echo and gradient-recalled echo sequences. T2 mapping is most commonly used to qualitatively assess articular cartilage microstructural composition and integrity, extracellular matrix components, and water content. Quantitative techniques may be able to label articular cartilage alterations before morphological defects are visible. Accurate detection and characterization of shallow low-grade partial and small articular cartilage defects are the most challenging for any technique, but where high spatial resolution 3D MRI techniques perform best. This review article provides a practical overview of commonly used 2D and 3D MRI techniques for articular cartilage assessments in osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Imageamento Tridimensional/métodos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Osteoartrite/diagnóstico por imagem , Osteoartrite/patologia , Imageamento por Ressonância Magnética/métodos , Água , Articulação do Joelho/patologia
19.
Eur Radiol ; 32(12): 8670-8680, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35751699

RESUMO

OBJECTIVES: To test whether a 4-fold accelerated 3D T2-weighted (T2) CAIPIRINHA SPACE TSE sequence with isotropic voxel size is equivalent to conventional 2DT2 TSE for the evaluation of intrinsic and perilesional soft tissue tumors (STT) characteristics. METHODS: For 108 patients with histologically-proven STTs, MRI, including 3DT2 (CAIPIRINHA SPACE TSE) and 2DT2 (TSE) sequences, was performed. Two radiologists evaluated each sequence for quality (diagnostic, non-diagnostic), tumor characteristics (heterogeneity, signal intensity, margin), and the presence or absence of cortical involvement, marrow edema, and perilesional edema (PLE); tumor size and PLE extent were measured. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios and acquisition times for 2DT2 in two planes and 3DT2 sequences were reported. Descriptive statistics and inter-method agreement were reported. RESULTS: Image quality was diagnostic for all sequences (100% [108/108]). No difference was observed between 3DT2 and 2DT2 tumor characteristics (p < 0.05). There was no difference in mean tumor size (3DT2: 2.9 ± 2.5 cm, 2DT2: 2.8 ± 2.6 cm, p = 0.4) or PLE extent (3DT2:0.5 ± 1.2 cm, 2DT2:0.5 ± 1.0 cm, p = 0.9) between the sequences. There was no difference in the SNR of tumors, marrow, and fat between the sequences, whereas the SNR of muscle was higher (p < 0.05) on 3DT2 than 2DT2. CNR measures on 3DT2 were similar to 2DT2 (p > 0.1). The average acquisition time was shorter for 3DT2 compared with 2DT2 (343 ± 127 s vs 475 ± 162 s, respectively). CONCLUSION: Isotropic 3DT2 MRI offers higher spatial resolution, faster acquisition times, and equivalent assessments of STT characteristics compared to conventional 2DT2 MRI in two planes. 3DT2 is interchangeable with a 2DT2 sequence in tumor protocols. KEY POINTS: • Isotropic 3DT2 CAIPIRINHA SPACE TSE offers higher spatial resolution than 2DT2 TSE and is equivalent to 2DT2 TSE for assessments of soft tissue tumor intrinsic and perilesional characteristics. • Multiplanar reformats of 3DT2 CAIPIRINHA SPACE TSE can substitute for 2DT2 TSE acquired in multiple planes, thereby reducing the acquisition time of MRI tumor protocols. • 3DT2 CAIPIRINHA SPACE TSE and 2DT2 TSE had similar CNR of tissues.


Assuntos
Imageamento Tridimensional , Neoplasias de Tecidos Moles , Humanos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Neoplasias de Tecidos Moles/diagnóstico por imagem
20.
AJR Am J Roentgenol ; 218(6): 1021-1029, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35018796

RESUMO

BACKGROUND. Diagnosing liver lesions is challenging. CT is used for primary diagnosis, but its contrast resolution is limited. Investigating methods to improve detection of liver lesions is important. OBJECTIVE. The purpose of this study was to evaluate the effect of frequency-selective nonlinear blending on the detectability of liver lesions on CT. METHODS. A retrospective search yielded 109 patients with 356 malignant and benign liver lesions (191 principally diagnosed, 165 incidental findings) who underwent contrast-enhanced CT (CECT) in the portal venous phase and liver MRI between January 2012 and December 2017. Nonlinear blending was applied to CECT examinations, and three blinded readers independently rated the quality (5-point Likert scale) of randomly presented images. Focal lesions (n = 356) were evaluated for lesion identification and categorization to assess sensitivity. For 191 lesions (primary diagnosis), two readers evaluated CECT and nonlinear blending CT to compare lesion size and the accuracy of subjective measurements. A fourth reader performed ROI measurements for calculation of contrast-to-noise ratio (CNR), and a fifth reader reviewed MRI as the standard of reference. Statistics included interobserver agreement, quantitative comparisons of CNR, lesion size, and subjective image analyses of image quality and sensitivity for detecting liver lesions. RESULTS. Three readers rated the image quality of nonlinear blending CT (rating, 4; 10th-90th percentiles, 4-5) higher than that of CECT (rating, 2; 10th-90th percentiles, 1-3) (p < .001). CECT had good interreader agreement (interclass correlation coefficient [ICC], 0.81; 95% CI, 0.76-0.85), as did nonlinear blending CT (ICC, 0.75; 95% CI, 0.69-0.79). The median CNR of liver lesions increased with nonlinear blending (CECT, 4.18 [10th-90th percentiles, 1.67-9.06]; nonlinear blending CT, 12.49 [10th-90th percentiles, 6.18-23.39]; p < .001). Bland-Altman analysis of lesion size showed a reduction in underestimation from 2.5 (SD, 9.2) mm (95% CI, 1.2-3.9 mm) with CECT to 0.1 (SD, 3.9) mm (95% CI, -0.68 to 0.46 mm) for nonlinear blending CT (concordance correlation coefficient, 0.99). Sensitivity for detecting liver lesions increased to 86% for nonlinear blending CT. The sensitivity of CECT was 76%. CONCLUSION. Frequency-selective nonlinear blending in CECT increases image quality and CNR, increases the precision of size measurement, and increases sensitivity for detecting liver lesions. CLINICAL IMPACT. Use of nonlinear blending CT improves liver lesion detection and increases the accuracy of lesion size measurement, which is important when local ablation or liver transplant is being considered.


Assuntos
Meios de Contraste , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Padrões de Referência , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA