Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oper Dent ; 44(2): E75-E82, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30888926

RESUMO

OBJECTIVES:: This study evaluated the effect of argon plasma treatment (PLA) and its combination with sandblasting (SAN), silanization (SIL), and hydrophobic bonding resin (HBR) application on the micro-shear bond strength of water-aged restorative resin composite to a newly placed composite, simulating restoration repair. METHODS AND MATERIALS:: Forty-five light-cured composite plates (20-mm long × 20-mm wide × 4-mm thick) were fabricated using a hybrid composite and stored at 37°C in distilled water for six months. The aged composite surfaces were treated according to the following experimental groups, varying both treatment and order of application: 1) SAN + SIL + HBR (control), 2) SAN + PLA for 30 seconds + SIL + HBR, 3) SAN + SIL + PLA + HBR, 4) PLA + SIL + HBR, 5) PLA + SIL, 6) PLA + HBR, 7) SIL + PLA + HBR, 8) SIL + PLA, and 9) PLA. After the surface treatments, four fresh resin composite cylinders (1.5-mm high × 1.5-mm diameter) of the same composite were built on each aged composite surface using a silicone mold. After water storage for 24 hours or one year, the specimens were submitted to shear bond strength testing. Data were statistically analyzed by two-way analysis of variance and Tukey's test (5%). RESULTS:: Groups 1, 2, and 4 presented significantly higher bond strength means at 24 hours, although group 4 did not differ from group 7. Groups 5, 8, and 9 demonstrated significantly lower means than the other groups. Even though groups 1 and 2 had a significant bond strength reduction after 1 year, they still demonstrated higher bond strength at one year of storage. CONCLUSIONS:: While PLA application combined with surface treatment methods demonstrated high bond strength results, this treatment alone was not as beneficial as other methods that included SAN, SIL and HBR.


Assuntos
Colagem Dentária , Gases em Plasma , Argônio , Resinas Compostas , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento , Propriedades de Superfície
2.
J Dent Res ; 98(7): 779-785, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31050913

RESUMO

A novel filler-resin matrix interphase structure was developed and evaluated for dental composite restoratives. Nanogel additives were chemically attached to the filler surface to use this created interphase as a potential source of compliance to minimize stress development during polymerization. In addition, we evaluated the effects of free nanogel dispersion into the resin matrix, combined or not with nanogel-modified fillers. Nanogels with varied characteristics were synthesized (i.e., size, 5 and 11 nm; glass transition temperature, 28 °C to 65 °C). Glass fillers were treated with trimethoxyvinylsilane and further reacted with thiol-functionalized nanogels via a free radical thiol-ene reaction. γ-Methacryloxypropyltrimethoxysilane-surface treated fillers were used as a control. Composites were formulated with BisGMA/TEGDMA resin blend with 60 wt% fillers with nanogel-modified fillers and/or free nanogel additives at 15 wt% in the resin phase. Polymerization kinetics, polymerization stress, volumetric shrinkage, and rheological and mechanical properties were evaluated to provide comprehensive characterization. Nanogel-modified fillers significantly reduced the polymerization stress from 2.2 MPa to 1.7 to 1.4 MPa, resulting in 20% stress reduction. A significantly greater nanogel content was required to generate the same magnitude stress reduction when the nanogels were dispersed only in the resin phase. When the nanogel-modified filler surface treatment and resin-dispersed nanogel strategies were combined, there was a stress reduction of 50% (values of 1.2 to 1.1 MPa). Polymerization rate and volumetric shrinkage were significantly reduced for systems with nanogel additives into the resin. Notably, the flexural modulus of the materials was not compromised, although a slight reduction in flexural strength associated with the nanogel-modified interphase was observed. Overall, modest amounts of free nanogel additives in the resin phase can be effectively combined with a limited nanogel content filler-resin interphase to lower volumetric shrinkage and dramatically reduce overall polymerization stress of composites.


Assuntos
Resinas Compostas , Materiais Dentários , Nanogéis , Teste de Materiais , Metacrilatos , Maleabilidade , Polimerização , Ácidos Polimetacrílicos , Estresse Mecânico , Propriedades de Superfície
3.
Oper Dent ; 42(4): 445-455, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28402731

RESUMO

OBJECTIVES: The aims of this study were to characterize inorganic content (IC), light transmission (LT), biaxial flexural strength (BFS), and flexural modulus (FM) of one conventional (layered) and four bulk-fill composites at different depths. METHODS: Bulk-fill composites tested were Surefil SDR flow (SDR), Filtek Bulk Fill (FBF), Tetric EvoCeram Bulk Fill (TEC), and EverX Posterior (EXP). Herculite Classic (HER) was used as a control. Energy dispersive x-ray analysis and scanning electron microscopy were used to characterize filler particle composition and morphology. The LT through different composite thicknesses (1, 2, 3, and 4 mm) was measured using a laboratory-grade spectral radiometer system (n=5). For the BFS and FM tests, sets of eight stacked composite discs (0.5-mm thick) were prepared simulating bulk filling of a 4-mm-thick increment (n=8). RESULTS: SDR demonstrated larger, irregular particles than those observed in TEC or HER. Filler particles in FBF were spherical, while those in EXP were composed of fiberglass strands. The LT decreased with increased composite thickness for all materials. Bulk-fill composites allowed higher LT than the HER. Furthermore, HER proved to be the unique material, having lower BFS values at deeper regions. SDR, FBF, and TEC bulk-fill composites presented reduced FM with increasing composite depth. CONCLUSIONS: The bulk-fill composites investigated exhibited higher LT, independent of different filler content and characteristics. Although an increase in composite thickness reduced LT, the BFS of bulk-fill composites at deeper layers was not compromised.


Assuntos
Resinas Compostas/química , Materiais Dentários/química , Dureza , Luz , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA