Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
PLoS Pathog ; 19(12): e1011831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091362

RESUMO

Protein phosphatases are post-translational regulators of Toxoplasma gondii proliferation, tachyzoite-bradyzoite differentiation and pathogenesis. Here, we identify the putative protein phosphatase 6 (TgPP6) subunits of T. gondii and elucidate their role in the parasite lytic cycle. The putative catalytic subunit TgPP6C and regulatory subunit TgPP6R likely form a complex whereas the predicted structural subunit TgPP6S, with low homology to the human PP6 structural subunit, does not coassemble with TgPP6C and TgPP6R. Functional studies showed that TgPP6C and TgPP6R are essential for parasite growth and replication. The ablation of TgPP6C significantly reduced the synchronous division of the parasite's daughter cells during endodyogeny, resulting in disordered rosettes. Moreover, the six conserved motifs of TgPP6C were required for efficient endodyogeny. Phosphoproteomic analysis revealed that ablation of TgPP6C predominately altered the phosphorylation status of proteins involved in the regulation of the parasite cell cycle. Deletion of TgPP6C significantly attenuated the parasite virulence in mice. Immunization of mice with TgPP6C-deficient type I RH strain induced protective immunity against challenge with a lethal dose of RH or PYS tachyzoites and Pru cysts. Taken together, the results show that TgPP6C contributes to the cell division, replication and pathogenicity in T. gondii.


Assuntos
Parasitos , Fosfoproteínas Fosfatases , Toxoplasma , Animais , Humanos , Camundongos , Domínio Catalítico , Ciclo Celular/genética , Divisão Celular , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Virulência/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo
2.
Parasitol Res ; 122(9): 2155-2173, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37458821

RESUMO

Fasciola hepatica is a trematode leading to heavy economic setbacks to the livestock sector globally. The population's genetic information and intimate kinship level are frequently assessed using analysis of mitochondrial DNA. In this analysis, we retrieved cox1 (n = 247) and nad1 (n = 357) sequences of F. hepatica from the NCBI GenBank database and aligned the sequences with the respective reference sequences using MEGA software. The median joining network was drawn using PopArt software while neutrality and diversity indices were estimated with the help of DnaSp software. Neighbor-joining phylogenetic tree was constructed using the MEGA software package. A total of 46 and 98 distinctive haplotypes were observed for cox1 and nad1 genes, respectively. Diversity indices indicated high haplotype and nucleotide diversities in both genes. Positive Tajima's D and Fu's Fs values were found for the entire population of both the genes under study. The cox1 and nad1 gene segments in this study showed high Tajima's D values, suggesting a low likelihood of future population growth. The Tajima's D value of the nad1 gene sequence is lower (2.14910) than that of the cox1 gene sequence (3.40314), which suggests that the former is growing at a slower rate. However, the region-wise analysis revealed that both the cox1 and nad1 genes showed deviation from neutrality suggesting a recent population expansion as a result of an excess of low-frequency polymorphism. Furthermore, the overall host-wise analysis showed positive and significant Tajima's D values for the cox1 and nad1 gene sequences. To the best of our knowledge, this is the first attempt to provide insights into genetic variations and population structure of F. hepatica at a global scale using cox1 and nad1 genes. Our findings suggest the existence of specific variants of F. hepatica in different parts of the world and provide information on the molecular ecology of F. hepatica. The results of this study also mark a critical development in upcoming epidemiological investigations on F. hepatica and will also contribute to understanding the global molecular epidemiology and population structure of F. hepatica.


Assuntos
Fasciola hepatica , Animais , Fasciola hepatica/genética , Filogenia , Variação Genética , DNA Mitocondrial/genética , Haplótipos
3.
Parasitol Res ; 122(5): 1107-1126, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933066

RESUMO

The identification of additional Echinococcus granulosus sensu lato (s.l.) complex species/genotypes in recent years raises the possibility that there might be more variation among this species in China than is currently understood. The aim of this study was to explore intra- and inter-species variation and population structure of Echinococcus species isolated from sheep in three areas of Western China. Of the isolates, 317, 322, and 326 were successfully amplified and sequenced for cox1, nad1, and nad5 genes, respectively. BLAST analysis revealed that the majority of the isolates were E. granulosus s.s., and using the cox1, nad1, and nad5 genes, respectively, 17, 14, and 11 isolates corresponded to Elodea canadensis (genotype G6/G7). In the three study areas, G1 genotypes were the most prevalent. There were 233 mutation sites along with 129 parsimony informative sites. A transition/transversion ratio of 7.5, 8, and 3.25, respectively, for cox1, nad1, and nad5 genes was obtained. Every mitochondrial gene had intraspecific variations, which were represented in a star-like network with a major haplotype with observable mutations from other distant and minor haplotypes. The Tajima's D value was significantly negative in all populations, indicating a substantial divergence from neutrality and supporting the demographic expansion of E. granulosus s.s. in the study areas. The phylogeny inferred by the maximum likelihood (ML) method using nucleotide sequences of cox1-nad1-nad5 further confirmed their identity. The nodes assigned to the G1, G3, and G6 clades as well as the reference sequences utilized had maximal posterior probability values (1.00). In conclusion, our study confirms the existence of a significant major haplotype of E. granulosus s.s. where G1 is the predominant genotype causing of CE in both livestock and humans in China.


Assuntos
Equinococose , Echinococcus granulosus , Animais , Humanos , Ovinos , Echinococcus granulosus/genética , Tibet , Equinococose/epidemiologia , Equinococose/veterinária , China , Genótipo , Haplótipos , Mutação , Filogenia , Variação Genética
4.
Parasitol Res ; 121(12): 3455-3466, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149499

RESUMO

Parasitic infection is one of the many challenges facing livestock production globally. Cysticercosis tenuicollis is a common parasitic disease in domestic and wild ruminants (intermediate host) caused by the larval stage of Taenia hydatigena that primarily infects dogs (definitive host). Although genetic studies on this parasite exist, only a few describe the genetic variation of this parasite in Mongolia. Our aim was thus, to identify the mitochondrial differences in ovine isolates of Cysticercus tenuicollis entering China from Mongolia and comparison with existing Chinese isolates from sheep and goats based on the recently described PCR-RFLP method and mitochondrial genes of NADH dehydrogenase subunit 4 (nad4) and the NADH dehydrogenase subunit 5 (nad5). Sixty-nine isolates were collected during routine veterinary meat inspections from sheep that originated from Mongolia, at the modern slaughterhouses in Erenhot City, Inner Mongolia. Additional 114 cysticerci were also retrieved from sheep and goats from northern (Inner Mongolia Autonomous Region, Ningxia Hui Autonomous Region, and Gansu Province), western (Tibet Autonomous Region), and southern (Jiangxi Province and Guangxi Province) China. The PCR-RFLP approach of the nad5 showed nine mitochondrial subclusters A1, A2, A3, A5, A8, A9, A10, A11, and B of T. hydatigena isolates from sheep and goats from Mongolia and China. Meanwhile, haplogroup A1 RFLP profile was more widespread than other variants. These data supplements existing information on the molecular epidemiology of T. hydatigena in China and Mongolia and demonstrate the occurrence of similar genetic population structures in both countries.


Assuntos
Cisticercose , Doenças dos Ovinos , Taenia , Ovinos , Animais , Cães , Taenia/genética , Cysticercus/genética , Mongólia/epidemiologia , Variação Genética , Filogenia , China , Cisticercose/epidemiologia , Cisticercose/veterinária , Cisticercose/parasitologia , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/parasitologia , Cabras
5.
Parasitology ; 148(3): 311-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33092662

RESUMO

Cysticercosis caused by the metacestode larval stage of Taenia hydatigena formerly referred to as Cysticercus tenuicollis is a disease of veterinary importance that constitutes a significant threat to livestock production worldwide, especially in endemic regions due to condemnation of visceral organs and mortality rate of infected young animals. While the genetic diversity among parasites is found to be potentially useful in many areas of research including molecular diagnostics, epidemiology and control, that of T. hydatigena across the globe remains poorly understood. In this study, analysis of the mitochondrial DNA (mtDNA) of adult worms and larval stages of T. hydatigena isolated from dogs, sheep and a wild boar in China showed that the population structure consists of two major haplogroups with very high nucleotide substitutions involving synonymous and non-synonymous changes. Compared with other cestodes such as Echinococcus spp., the genetic variation observed between the haplogroups is sufficient for the assignment of major haplotype or genotype division as both groups showed a total of 166 point-mutation differences between the 12 mitochondrial protein-coding gene sequences. Preliminary analysis of a nuclear protein-coding gene (pepck) did not reveal any peculiar changes between both groups which suggests that these variants may only differ in their mitochondrial makeup.


Assuntos
DNA de Helmintos/genética , DNA Mitocondrial/genética , Taenia/genética , Teníase/veterinária , Sequência de Aminoácidos , Animais , China , DNA de Helmintos/química , DNA de Helmintos/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Doenças do Cão/parasitologia , Cães , Haplótipos , Larva/genética , Larva/crescimento & desenvolvimento , Filogenia , Alinhamento de Sequência , Ovinos , Doenças dos Ovinos/parasitologia , Carneiro Doméstico , Sus scrofa , Suínos , Doenças dos Suínos/parasitologia , Taenia/crescimento & desenvolvimento , Taenia/metabolismo , Teníase/parasitologia
6.
Korean J Parasitol ; 58(1): 93-97, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32145734

RESUMO

The cestode Taenia hydatigena uses canids, primarily dogs, as definitive hosts, while the metacestode larval stage cysticercus infects a range of intermediate hosts, including domestic animals such as goats, sheep, and pigs. Cysticercosis due to T. hydatigena has large veterinary and economic drawbacks. Like other taeniids, e.g., Echinococcus, intraspecific variation is found among the members of the genus Taenia. In Africa, few studies are available on the epidemiology and distribution of T. hydatigena, and even fewer studies are available on its genetic variation. In this study, we molecularly identified 11 cysticerci from sheep in Sudan and demonstrated the genetic variation based on the NADH dehydrogenase subunit 1 (nad1) and cytochrome c oxidase subunit 1 (cox1) mitochondrial genes. The isolates were correctly identified as T. hydatigena with more than 99% similarity to those in the GenBank database. Low diversity indices and insignificant neutrality indices were observed, with 3 and 2 haplotypes for the nad1 and cox1 genes, respectively. The results suggest the presence of unique T. hydatigena haplotypes in Sudan, as haplotypes with 100% similarity were not found in the GenBank database. With few available studies on the genetic variation of T. hydatigena in Africa, this report represents the first insights into the genetic variation of T. hydatigena in Sudan and constitutes useful data.


Assuntos
Ovinos/parasitologia , Taenia/genética , Taenia/isolamento & purificação , Animais , Variação Genética , Sudão
7.
BMC Infect Dis ; 19(1): 854, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619188

RESUMO

BACKGROUND: Taenia hydatigena, T. multiceps, T. pisiformis, and Dipylidium caninum are four common large and medium-sized tapeworms parasitizing the small intestine of dogs and other canids. These parasites cause serious impact on the health and development of livestock. However, there are, so far, no commercially available molecular diagnostic kits capable of simultaneously detecting all four parasites in dogs. The aim of the study was therefore to develop a multiplex PCR assay that will accurately detect all four cestode infections in one reaction. METHODS: Specific primers for a multiplex PCR were designed based on corresponding mitochondrial genome sequences, and its detection limit was assessed by serial dilutions of the genomic DNAs of tapeworms examined. Furthermore, field samples of dog feces were tested using the developed assay. RESULTS: A multiplex polymerase chain reaction (PCR) assay was developed based on mitochondrial DNA (mtDNA) that accurately and simultaneously identify four cestode species in one reaction using specific fragment sizes of 592, 385, 283, and 190 bp for T. hydatigena, T. multiceps, T. pisiformis, and D. caninum, respectively. The lowest DNA concentration detected was 1 ng for T. hydatigena, T. multiceps and T. pisiformis, and 0.1 ng for D. caninum in a 25 µl reaction system. This assay offers high potential for the rapid detection of these four tapeworms in host feces simultaneously. CONCLUSIONS: This study provides an efficient tool for the simultaneous detection of T. hydatigena, T. multiceps, T. pisiformis, and D. caninum. The assay will be potentially useful in epidemiological studies, diagnosis, and treatment of these four cestodes infections during prevention and control program.


Assuntos
Cestoides , Infecções por Cestoides , Técnicas Microbiológicas/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Animais , Cestoides/genética , Cestoides/isolamento & purificação , Infecções por Cestoides/diagnóstico , Infecções por Cestoides/parasitologia , Cães
8.
BMC Vet Res ; 15(1): 304, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438945

RESUMO

BACKGROUND: Brucellosis is a worldwide zoonotic infectious disease that is transmitted in various ways and causes great harm to humans and animals. The brucellosis pathogen is Brucella, which mainly resides in macrophage cells and survives and replicates in host cells. However, the mechanisms underlying Brucella survival in macrophage cells have not been thoroughly elucidated to date. Peroxiredoxin 6 (Prdx6) is a bifunctional protein that shows not only GSH peroxidase activity but also phospholipase A2 activity and plays important roles in combating oxidative damage and regulating apoptosis. RESULTS: Recombinant mouse (Mus musculus) Prdx6 (MmPrdx6) was expressed and purified, and monoclonal antibodies against MmPrdx6 were prepared. Using the Brucella suis S2 strain to infect RAW264.7 murine macrophages, the level of intracellular Prdx6 expression first decreased and later increased following infection. Overexpressing Prdx6 in macrophages resulted in an increase in B. suis S2 strain levels in RAW264.7 cells, while knocking down Prdx6 reduced the S2 levels in cells. CONCLUSIONS: Host Prdx6 can increase the intracellular survival of B. suis S2 strain and plays a role in Brucella infection.


Assuntos
Brucella suis/fisiologia , Brucelose/microbiologia , Peroxirredoxina VI/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7
9.
Microb Pathog ; 116: 180-188, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29331367

RESUMO

The interleukin-1 family is an important component of the innate immune system and plays an important role in regulating immune responses on the invasion of intracellular parasites in the acquired immune system. Interleukin 1ß (IL-1ß) is one of the members of the IL-1 family that predominantly activates downstream signaling pathways to play immunological functions of stimulating T and B lymphocyte activation and promoting the various syntheses of inflammatory substances in conjunction with other cytokines. Here, a full-length IL-1ß cDNA (OaIL-1ß) of sheep (Ovis aries) was cloned using rapid amplification of cDNA ends (RACE), which consists of 1494 bp and contains a 5'-UTR region with a length of 83 bp, a complete ORF of 801 bp in length, and a 3'-UTR region with a length of 642 bp. Recombinant protein OaIL-1ß was expressed and purified, and the monoclonal antibody against IL-1ß of sheep is prepared. Western blotting results showed that the sheep IL-1ß protein was detected in the heart, liver, lung, kidney, stomach, intestine, muscle, lymph nodes and leukocytes with the highest expression in the muscle and the lowest expression in the lung. Different bacteria treating sheep white blood cells induced differential expression of OaIL-1ß. Compared with the normal sheep, OaIL-1ß in the buffy coat was differentially expressed in the Brucella melitensis-challenged group and the B. suis S2 strain-inoculated group. However, whether IL-1ß may be considered as a molecular biomarker for differing Brucella-infected animals from brucellosis-vaccinated animals or not need to be further studied.


Assuntos
Brucelose/veterinária , Perfilação da Expressão Gênica , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Doenças dos Ovinos/patologia , Carneiro Doméstico , Estruturas Animais/patologia , Animais , Brucella melitensis/imunologia , Brucella suis/imunologia , Brucelose/patologia , Clonagem Molecular , Expressão Gênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ovinos
10.
Microbiol Immunol ; 60(8): 533-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27399903

RESUMO

Poultry husbandry is a very important aspect of the agricultural economy in China. However, chicks are often susceptible to infectious disease microorganisms, such as bacteria, viruses and parasites, causing large economic losses in recent years. In the present study, we isolated an Acinetobacter baumannii strain, CCGGD201101, from diseased chicks in the Jilin Province of China. Regression analyses of virulence and LD50 tests conducted using healthy chicks confirmed that A. baumannii CCGGD201101, with an LD50 of 1.81 (±0.11) × 10(4) CFU, was more virulent than A. baumannii ATCC17978, with an LD50 of 1.73 (±0.13) × 10(7) CFU. Moreover, TEM examination showed that the pili of A. baumannii CCGGD201101 were different from those of ATCC17978. Antibiotic sensitivity analyses showed that A. baumannii CCGGD201101 was sensitive to rifampicin but resistant to most other antibiotics. These results imply that A. baumannii strain CCGGD201101 had both virulence enhancement and antibiotic resistance characteristics, which are beneficial for A. baumannii survival under adverse conditions and enhance fitness and invasiveness in the host. A. baumannii CCGGD20101, with its high virulence and antimicrobial resistance, may be one of the pathogens causing death of diseased chicks.


Assuntos
Infecções por Acinetobacter/veterinária , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Doenças das Aves Domésticas/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/ultraestrutura , Animais , China , Testes de Sensibilidade Microbiana , Fenótipo , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/mortalidade , Virulência
11.
Artigo em Chinês | MEDLINE | ID: mdl-25902683

RESUMO

Taeniidae cestodes are the pathogens of cysticercosis and hydatid disease, these diseases lead to substantial economic losses in animal husbandry and cause morbidity and mortality in human population. In recent years, many host-protective antigens of Taeniidae cestodes has been found, and their recombinant protein vaccines have been developed against several species, such as Taenia ovis, T. saginata, T. solium, Echinococcus granulosus, and E. multilocularis. This paper focuses on the major host-protective antigens of Taeniidae cestodes and their molecular biological characteristics.


Assuntos
Taenia , Animais , Antígenos de Helmintos , Cisticercose , Equinococose , Humanos , Vacinas Sintéticas
12.
Int J Parasitol ; 54(2): 109-121, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37832712

RESUMO

Pathogenicity of the zoonotic pathogen Toxoplasma gondii largely depends on the secretion of effector proteins into the extracellular milieu and host cell cytosol, including the dense granule proteins (GRAs). The protein-encoding gene TGME49_299780 was previously identified as a contributor to parasite fitness. However, its involvement in parasite growth, virulence and infectivity in vitro and in vivo remains unknown. Here, we comprehensively examined the role of this new protein, termed GRA76, in parasite pathogenicity. Subcellular localization revealed high expression of GRA76 in tachyzoites inside the parasitophorous vacuole (PV). However, its expression was significantly decreased in bradyzoites. A CRISPR-Cas9 approach was used to knock out the gra76 gene in the T. gondii type I RH strain and type II Pru strain. The in vitro plaque assays and intracellular replication showed the involvement of GRA76 in replication of RH and Pru strains. Deletion of the gra76 gene significantly decreased parasite virulence, and reduced the brain cyst burden in mice. Using RNA sequencing, we detected a significant increase in the expression of bradyzoite-associated genes such as BAG1 and LDH2 in the PruΔgra76 strain compared with the wild-type Pru strain. Using an in vitro bradyzoite differentiation assay, we showed that loss of GRA76 significantly increased the propensity for parasites to form bradyzoites. Immunization with PruΔgra76 conferred partial protection against acute and chronic infection in mice. These findings show the important role of GRA76 in the pathogenesis of T. gondii and highlight the potential of PruΔgra76 as a candidate for a live-attenuated vaccine.


Assuntos
Toxoplasma , Animais , Camundongos , Toxoplasma/genética , Virulência/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
13.
Int J Parasitol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936501

RESUMO

Establishing an intact intracellular parasitophorous vacuole (PV) that enables efficient nutrient uptake and protein trafficking is essential for the survival and proliferation of Toxoplasma gondii. Although the PV membrane (PVM)-localized dense granule protein 17 (GRA17) and GRA23 mediate the permeability of the PVM to small molecules, including nutrient uptake and excretion of metabolic by-products, the molecular mechanism by which T. gondii acquires nutrients remains unclear. In this study, we showed that the secreted protein GRA47 contributed to normal PV morphology, PVM permeability to small molecules, growth, and virulence in T. gondii. Co-immunoprecipitation analysis demonstrated potential interaction of GRA47 with GRA72, and the loss of GRA72 affected PV morphology, parasite growth and infectivity. To investigate the biological relationship among GRA47, GRA72, GRA17 and GRA23, attempts were made to construct strains with double gene deletion and overexpressing strains. Only Δgra23Δgra72 was successfully constructed. This strain exhibited a significant increase in the proportion of aberrant PVs compared with the Δgra23 strain. Overexpressing one of the three related GRAs partially rescued PVs with aberrant morphology in Δgra47, Δgra72 and Δgra17, while the expression of the Plasmodium falciparum PVM protein PfExp2, an ortholog of GRA17 and GRA23, fully rescued the PV morphological defect in all three Δgra strains. These results suggest that these GRA proteins may not be functionally redundant but rather work in different ways to regulate nutrient acquisition. These findings highlight the versatility of the nutrient uptake mechanisms in T. gondii, which may contribute to the parasite's remarkable ability to grow in different cellular niches in a very broad range of hosts.

14.
Parasit Vectors ; 17(1): 178, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576040

RESUMO

BACKGROUND: To successfully replicate within the host cell, Toxoplasma gondii employs several mechanisms to overcome the host cell defenses and mitigate the harmful effects of the free radicals resulting from its own metabolic processes using effectors such as thioredoxin proteins. In this study, we characterize the location and functions of a newly identified thioredoxin in T. gondii, which was named Trx4. METHODS: We characterized the functional role of Trx4 in T. gondii Type I RH and Type II Pru strains by gene knockout and studied its subcellular localization by endogenous protein HA tagging using CRISPR-Cas9 gene editing. The enzyme-catalyzed proximity labeling technique, the TurboID system, was employed to identify the proteins in proximity to Trx4. RESULTS: Trx4 was identified as a dense granule protein of T. gondii predominantly expressed in the parasitophorous vacuole (PV) and was partially co-localized with GRA1 and GRA5. Functional analysis showed that deletion of trx4 markedly influenced the parasite lytic cycle, resulting in impaired host cell invasion capacity in both RH and Pru strains. Mutation of Trx domains in Trx4 in RH strain revealed that two Trx domains were important for the parasite invasion. By utilizing the TurboID system to biotinylate proteins in proximity to Trx4, we identified a substantial number of proteins, some of which are novel, and others are previously characterized, predominantly distributed in the dense granules. In addition, we uncovered three novel proteins co-localized with Trx4. Intriguingly, deletion of trx4 did not affect the localization of these three proteins. Finally, a virulence assay demonstrated that knockout of trx4 resulted in a significant attenuation of virulence and a significant reduction in brain cyst loads in mice. CONCLUSIONS: Trx4 plays an important role in T. gondii invasion and virulence in Type I RH strain and Type II Pru strain. Combining the TurboID system with CRISPR-Cas9 technique revealed many PV-localized proximity proteins associated with Trx4. These findings suggest a versatile role of Trx4 in mediating the processes that occur in this distinctive intracellular membrane-bound vacuolar compartment.


Assuntos
Toxoplasma , Animais , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/genética , Virulência/genética , Fatores Imunológicos/metabolismo , Tiorredoxinas/genética
15.
Nat Commun ; 15(1): 793, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278808

RESUMO

Sexual development in Toxoplasma gondii is a multistep process that culminates in the production of oocysts, constituting approximately 50% of human infections. However, the molecular mechanisms governing sexual commitment in this parasite remain poorly understood. Here, we demonstrate that the transcription factors AP2XI-2 and AP2XII-1 act as negative regulators, suppressing merozoite-primed pre-sexual commitment during asexual development. Depletion of AP2XI-2 in type II Pru strain induces merogony and production of mature merozoites in an alkaline medium but not in a neutral medium. In contrast, AP2XII-1-depleted Pru strain undergoes several rounds of merogony and produces merozoites in a neutral medium, with more pronounced effects observed under alkaline conditions. Additionally, we identified two additional AP2XI-2-interacting proteins involved in repressing merozoite programming. These findings underscore the intricate regulation of pre-sexual commitment by a network of factors and suggest that AP2XI-2 or AP2XII-1-depleted Pru parasites can serve as a model for studying merogony in vitro.


Assuntos
Toxoplasma , Animais , Humanos , Toxoplasma/metabolismo , Merozoítos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
16.
Korean J Parasitol ; 51(2): 197-201, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23710087

RESUMO

A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Taenia/classificação , Taenia/isolamento & purificação , Animais , China , Análise por Conglomerados , Cisticercose/parasitologia , Cisticercose/veterinária , DNA de Helmintos/química , DNA de Helmintos/genética , DNA de Helmintos/isolamento & purificação , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Doenças das Cabras/parasitologia , Cabras , Filogenia , Reação em Cadeia da Polimerase , Subunidades Proteicas/genética , Análise de Sequência de DNA , Ovinos , Doenças dos Ovinos/parasitologia , Taenia/genética
17.
Artigo em Chinês | MEDLINE | ID: mdl-24818401

RESUMO

Cathepsin F is an important member of papain-like subfamily in cysteine protease family. Cathepsin F of helminth parasites can hydrolyze the specific substrate, degrade host protein such as hemoglobin for nutrition, and be involved in invasion into host tissue. Therefore, cathepsin F serves as a potential target for parasitic disease immunodiagnosis, vaccine design and anti-parasite drug screening. This article reviews the structural characteristics and mechanisms of cathepsin F, and research advances on cathepsin F of parasitic helminths.


Assuntos
Catepsina F , Helmintos/enzimologia , Animais
18.
Acta Trop ; 243: 106925, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080264

RESUMO

The larval forms of taeniid cestodes belonging to the genus Echinococcus are the source of the zoonotic infection known as echinococcosis. Alveolar and cystic echinococcosis are caused by Echinococcus multilocularis and Echinococcus granulosus (s. s), respectively. It is endemic in several regions of the world. In this systematic review, we describe diagnosis, and the species (human, canids, livestock, and small rodents) affected by cystic (CE) and alveolar echinococcosis (AE). From 1999 to 2021, we searched the online directory through PubMed, SCOPUS, Web of Science, and google scholar. Among the 37,700 records found in the online databases, 187 publications met our eligibility requirements. The majority of investigations employed a range of diagnostic methods, such as ELISA, imaging, copro-PCR, necropsy or arecoline hydrobromide purgation, morphological cestode confirmation, and fecal sieving/flotation to detect and confirm Echinococcus infection. ELISA was the most commonly used method followed by PCR, and imaging. The research team retrieved data describing the incidence or assessment of the diagnostic test for E. multilocularis in humans (N = 99), canids (N = 63), small ruminants (N = 13), large ruminants (N = 3), camel (N = 2), pigs (N = 2) and small mammals (N = 5). This study was conducted to explore the diagnostic tools applied to detect echinococcosis in humans as well as animals in prevalent countries, and to report the characteristic of new diagnostic tests for disease surveillance. This systematic review revealed that ELISA (alone or in combination) was the most common method used for disease diagnosis and diagnostic efficacy and prevalence rate increased when recombinant antigens were used. It is highly recommended to use combination protcols such as serological with molecular and imaging technique to diagnose disease. Our study identified scarcity of data of reporting echinococcosis in humans/ animals in low-income or developing countries particularly central Asian countries. Study reports in small rodents indicate their role in disease dissemination but real situation in these host is not reflected due to limited number of studies. Even though echinococcosis affects both public health and the domestic animal sector, therefore, it is important to devise new and strengthen implementation of the existing monitoring, judging, and control measures in this estimate.


Assuntos
Canidae , Equinococose , Echinococcus granulosus , Echinococcus multilocularis , Humanos , Animais , Suínos , Equinococose/diagnóstico , Equinococose/epidemiologia , Equinococose/veterinária , Animais Domésticos , Zoonoses/diagnóstico , Zoonoses/epidemiologia , Echinococcus multilocularis/genética , Roedores
19.
Mol Biochem Parasitol ; 253: 111542, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36584819

RESUMO

Cystic echinococcosis is a zoonotic disease of livestock having serious economic setbacks. The etiological agents of the disease belong to Echinococcus granulosus sensu lato. Despite of worldwide distribution of the disease, the molecular studies mainly employ amplification of cox1, nad1 and nad5 genes. To further strengthen the knowledge about significance of other molecular markers and to investigate the genetic diversity and population structure of Echinococcus species in Pakistan, the current study was designed in which full length mitochondrial cytb, atp6 and nad2 genes were amplified. Based on BLAST searches of the generated cytb, atp6 and nad2 gene sequences from a total of 18 hydatid cysts collected from cattle, 12 isolates were identified as E. granulousus G3 and 6 as E. granulosus (G1). The phylogeny inferred by the Bayesian method using nucleotide sequences of cytb-atp6-nad2 further confirmed their identity. The diversity indices indicated a high haplotype and a low nucleotide diversity. The negative values of Tajima's D and Fu's Fs test demonstrated deviation from neutrality suggesting a recent population expansion. To the best of our knowledge, the present study described the genetic variation of E. granulosus population for the first time in Pakistan using full-length cytb, atp6 and nad2 mitochondrial genes. The findings on the genetic variation of E. granulosus in Pakistan will constitute useful baseline information for future studies on the prevalence and population structure of E. granulosus based on full-length cytb, atp6 and nad2.


Assuntos
Equinococose , Echinococcus granulosus , Echinococcus , Animais , Bovinos , Echinococcus granulosus/genética , Genes Mitocondriais , Filogenia , Paquistão , Teorema de Bayes , Genótipo , Variação Genética , Equinococose/veterinária , Equinococose/epidemiologia , Echinococcus/genética
20.
Front Vet Sci ; 10: 1191271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396990

RESUMO

Cystic echinococcosis (CE) is a neglected zoonotic disease caused by Echinococcus granulosus (sensu stricto). The parasite affects a wide range of livestock and wild animals. In this study, the population diversity of the Echinococcus species was investigated based on mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (nad5) genes. In addition to this, ß-tubulin gene isoforms of Echinococcus granulosus were amplified to determine the resistance against benzimidazoles. For this purpose, 40 cyst samples from cattle (n = 20) and buffaloes (n = 20) were collected from the main abattoir of Sialkot. DNA extraction was performed using Qiagen Blood and Tissue Kits. Amplification was performed through PCR. Each amplicon was confirmed by GelRed™ stained agarose gel (2%). Samples were sequenced in a DNA analyzer and viewed for any misread nucleotide by using MEGA (v.11). Corrections in nucleotide sequence and multiple sequence alignment were made through the same software. NCBI-BLAST was used for sample specific sequences to identify them as belonging to a particular species. Diversity indices were estimated using DnaSP (v.6) while phylogenetic analysis was inferred using the Bayesian method using MrBayes (v.1.1). ß-tubulin gene isoforms sequence analysis was performed to find out the candidate gene causing benzimidazole resistance. All 40 isolates were found positive for E. granulosus. BLAST-based searches of sequences of each isolate for each gene (nad5 and cytb) confirmed their maximum similarity with the G1 genotype. Overall, high haplotype diversity (Hd nad5 = 1.00; Hd cytb = 0.833) and low nucleotide diversity (π nad5 = 0.00560; π = cytb = 0.00763) was identified based on diversity indices. For both the genes, non-significant values of Tajima's D (nad5 = -0.81734; cytb = -0.80861) and Fu's Fs (nad5 = -1.012; cytb = 0.731) indicate recent population expansion. Bayesian phylogeny-based results of nad5 and cytb sequences confirmed their genotypic status as distinct from other Echinococcus species. This study shed light on the status of benzimidazole resistance in Echinococcus granulosus for the very first time from Pakistan. The findings of this study will significantly add in the information available on genetic diversity of Echinoccous granulosus based on cytb and nad5 genes sequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA