RESUMO
OBJECTIVES: To investigate the pre-analytics of the molecular testing of cytology specimens, we studied the effects of time in refrigerator storage (4°C) of malignant effusions on RNA sequencing (RNAseq) results. METHODS: Ten effusion specimens were stored in a refrigerator (4°C) for different durations (day 0, 1, 4, and 7). All specimens were prepared as cytospins fixed in either Carnoy's solution or 95% ethanol (EtOH) and in an RNA preservative for a fresh frozen (FF) high-quality reference. Whole transcriptome (wt) and targeted (t)RNAseq of two multigene expression signatures were performed. We then compared transcript expression levels (including mutant allele fraction) according to pre-analytical variables using a concordance correlation coefficient (CCC) and a mixed effect model. RESULTS: Sequencing results were mostly stable over increasing time in storage. Cytospins fixed in Carnoy's solution were more concordant with FF samples than cytospins fixed in 95% EtOH at all timepoints. This finding was consistent for both wtRNAseq (averages: day 0 CCC = 0.98 vs 0.91; day 7 CCC = 0.88 vs 0.78) and tRNAseq methods (averages: day 0 CCC = 0.98 vs 0.81; day 7 CCC = 0.98 vs 0.90). Cytospins fixed in Carnoy's solution did not show significant changes in expression over timepoints or between expression signatures, whereas 95% EtOH did. CONCLUSION: RNAseq can be accurately performed on effusion specimens after prolonged refrigerator storage. RNA extracted from scraped cytospin slides fixed in Carnoy's solution was marginally superior to 95% EtOH fixation, but either method had comparable analytic performance to high-quality FF RNA samples.
RESUMO
BACKGROUND: Our objective was to assess whether modifications to a customized targeted RNA sequencing (RNAseq) assay to include unique molecular identifiers (UMIs) that collapse read counts to their source mRNA counts would improve quantification of transcripts from formalin-fixed paraffin-embedded (FFPE) tumor tissue samples. The assay (SET4) includes signatures that measure hormone receptor and PI3-kinase related transcriptional activity (SETER/PR and PI3Kges), and measures expression of selected activating point mutations and key breast cancer genes. METHODS: Modifications included steps to introduce eight nucleotides-long UMIs during reverse transcription (RT) in bulk solution, followed by polymerase chain reaction (PCR) of labeled cDNA in droplets, with optimization of the polymerase enzyme and reaction conditions. We used Lin's concordance correlation coefficient (CCC) to measure concordance, including precision (Rho) and accuracy (Bias), and nonparametric tests (Wilcoxon, Levene's) to compare the modified (NEW) SET4 assay to the original (OLD) SET4 assay and to whole transcriptome RNAseq using RNA from matched fresh frozen (FF) and FFPE samples from 12 primary breast cancers. RESULTS: The modified (NEW) SET4 assay measured single transcripts (p< 0.001) and SETER/PR (p=0.002) more reproducibly in technical replicates from FFPE samples. The modified SET4 assay was more precise for measuring single transcripts (Rho 0.966 vs 0.888, p< 0.01) but not multigene expression signatures SETER/PR (Rho 0.985 vs 0.968) or PI3Kges (Rho 0.985 vs 0.946) in FFPE, compared to FF samples. It was also more precise than wtRNAseq of FFPE for measuring transcripts (Rho 0.986 vs 0.934, p< 0.001) and SETER/PR (Rho 0.993 vs 0.915, p=0.004), but not PI3Kges (Rho 0.988 vs 0.945, p=0.051). Accuracy (Bias) was comparable between protocols. Two samples carried a PIK3CA mutation, and measurements of transcribed mutant allele fraction was similar in FF and FFPE samples and appeared more precise with the modified SET4 assay. Amplification efficiency (reads per UMI) was consistent in FF and FFPE samples, and close to the theoretically expected value, when the library size exceeded 400,000 aligned reads. CONCLUSIONS: Modifications to the targeted RNAseq protocol for SET4 assay significantly increased the precision of UMI-based and reads-based measurements of individual transcripts, multi-gene signatures, and mutant transcript fraction, particularly with FFPE samples.
Assuntos
Biomarcadores Tumorais/genética , Mutação , Neoplasias/genética , Neoplasias/patologia , Manejo de Espécimes/métodos , Fixação de Tecidos/métodos , Transcriptoma , Formaldeído/química , Perfilação da Expressão Gênica , Humanos , Inclusão em Parafina/métodos , Prognóstico , Análise de Sequência de RNARESUMO
BACKGROUND: We translated a multigene expression index to predict sensitivity to endocrine therapy for Stage II-III breast cancer (SET2,3) to hybridization-based expression assays of formalin-fixed paraffin-embedded (FFPE) tissue sections. Here we report the technical validity with FFPE samples, including preanalytical and analytical performance. METHODS: We calibrated SET2,3 from microarrays (Affymetrix U133A) of frozen samples to hybridization-based assays of FFPE tissue, using bead-based QuantiGene Plex (QGP) and slide-based NanoString (NS). The following preanalytical and analytical conditions were tested in controlled studies: replicates within and between frozen and fixed samples, age of paraffin blocks, homogenization of fixed sections versus extracted RNA, core biopsy versus surgically resected tumor, technical replicates, precision over 20 weeks, limiting dilution, linear range, and analytical sensitivity. Lin's concordance correlation coefficient (CCC) was used to measure concordance between measurements. RESULTS: SET2,3 index was calibrated to use with QGP (CCC 0.94) and NS (CCC 0.93) technical platforms, and was validated in two cohorts of older fixed samples using QGP (CCC 0.72, 0.85) and NS (CCC 0.78, 0.78). QGP assay was concordant using direct homogenization of fixed sections versus purified RNA (CCC 0.97) and between core and surgical sample types (CCC 0.90), with 100% accuracy in technical replicates, 1-9% coefficient of variation over 20 weekly tests, linear range 3.0-11.5 (log2 counts), and analytical sensitivity ≥2.0 (log2 counts). CONCLUSIONS: Measurement of the novel SET2,3 assay was technically valid from fixed tumor sections of biopsy or resection samples using simple, inexpensive, hybridization methods, without the need for RNA purification.
Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/estatística & dados numéricos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , RNA Mensageiro/análise , Aurora Quinase A/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Estudos de Coortes , Receptor alfa de Estrogênio/genética , Estrogênios/uso terapêutico , Humanos , Inclusão em Parafina , Receptor ErbB-2/genética , Receptores de Progesterona/genética , Reprodutibilidade dos Testes , Fixação de TecidosRESUMO
BACKGROUND: Utilization of RNA sequencing methods to measure gene expression from archival formalin-fixed paraffin-embedded (FFPE) tumor samples in translational research and clinical trials requires reliable interpretation of the impact of pre-analytical variables on the data obtained, particularly the methods used to preserve samples and to purify RNA. METHODS: Matched tissue samples from 12 breast cancers were fresh frozen (FF) and preserved in RNAlater or fixed in formalin and processed as FFPE tissue. Total RNA was extracted and purified from FF samples using the Qiagen RNeasy kit, and in duplicate from FFPE tissue sections using three different kits (Norgen, Qiagen and Roche). All RNA samples underwent whole transcriptome RNA sequencing (wtRNAseq) and targeted RNA sequencing for 31 transcripts included in a signature of sensitivity to endocrine therapy. We assessed the effect of RNA extraction kit on the reliability of gene expression levels using linear mixed-effects model analysis, concordance correlation coefficient (CCC) and differential analysis. All protein-coding genes in the wtRNAseq and three gene expression signatures for breast cancer were assessed for concordance. RESULTS: Despite variable quality of the RNA extracted from FFPE samples by different kits, all had similar concordance of overall gene expression from wtRNAseq between matched FF and FFPE samples (median CCC 0.63-0.66) and between technical replicates (median expression difference 0.13-0.22). More than half of genes were differentially expressed between FF and FFPE, but with low fold change (median |LFC| 0.31-0.34). Two out of three breast cancer signatures studied were highly robust in all samples using any kit, whereas the third signature was similarly discordant irrespective of the kit used. The targeted RNAseq assay was concordant between FFPE and FF samples using any of the kits (CCC 0.91-0.96). CONCLUSIONS: The selection of kit to purify RNA from FFPE did not influence the overall quality of results from wtRNAseq, thus variable reproducibility of gene signatures probably relates to the reliability of individual gene selected and possibly to the algorithm. Targeted RNAseq showed promising performance for clinical deployment of quantitative assays in breast cancer from FFPE samples, although numerical scores were not identical to those from wtRNAseq and would require calibration.
Assuntos
Neoplasias da Mama/genética , Sequenciamento do Exoma/métodos , RNA/isolamento & purificação , Análise de Sequência de RNA/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Formaldeído , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Inclusão em Parafina , RNA/normas , Fixação de TecidosRESUMO
Objective: Analyze risk factors for cardiac surgery-associated acute kidney injury (CSA-AKI) in adults and establish a nomogram model for CSA-AKI based on plasma soluble urokinase-type plasminogen activator receptor (suPAR) and clinical characteristics. Methods: In a study of 170 patients undergoing cardiac surgery with cardiopulmonary bypass, enzyme-linked immunosorbent assay (ELISA) measured plasma suPAR levels. Multivariable logistic regression analysis identified risk factors associated with CSA-AKI. Subsequently, the CSA-AKI nomogram model was developed using R software. Predictive performance was evaluated using a receiver operating characteristic (ROC) curve and the area under the curve (AUC). Internal validation was performed through the Bootstrap method with 1000 repeated samples. Additionally, decision curve analysis (DCA) assessed the clinical applicability of the model. Results: Multivariable logistic regression analysis revealed that being male, age ≥ 50 years, operation time ≥ 290 minutes, postoperative plasma suPAR at 2 hours, and preoperative left ventricular ejection fraction (LVEF) were independent risk factors for CSA-AKI. Employing these variables as predictive factors, a nomogram model was constructed, an ROC curve was generated, and the AUC was computed as 0.817 (95% CI 0.726-0.907). The calibration curve indicated the accuracy of the model, and the results of DCA demonstrated that the model could benefit the majority of patients. Conclusion: Being male, age ≥ 50 years, operation time ≥ 290 minutes, low preoperative LVEF, and elevated plasma suPAR at 2 hours are independent risk factors for CSA-AKI. The nomogram model established based on these risk factors has high accuracy and clinical value, serving as a predictive tool for assessing the risk of CSA-AKI.
RESUMO
Introduction: We report a fatal case of massive airway bleeding caused by pulmonary strongyloidiasis in a patient with a transplanted kidney. Case Presentation: A 47-year-old male, regularly taking immunosuppressants post-kidney transplant, visited our hospital with symptoms of abdominal bloating, nausea, and emesis persisting for three days. After hospitalization, he developed a cough, hemoptysis, and respiratory failure. Sputum analysis confirmed an infestation with Strongyloides stercoralis. Despite receiving albendazole therapy and bronchoscopic management for bronchial hemorrhage, the patient ultimately died due to acute respiratory and circulatory collapse triggered by severe airway bleeding. Conclusion: Patients undergoing immunosuppressive therapy following kidney transplantation are at increased risk for disseminated strongyloidiasis. Consequently, infectious disease screening prior to transplantation, along with essential preventive pharmacotherapy, is of paramount importance.
RESUMO
Triple negative breast cancer (TNBC) accounts for 15-20% of breast cancer cases in the United States. Systemic neoadjuvant chemotherapy (NACT), with or without immunotherapy, is the current standard of care for patients with early-stage TNBC. However, up to 70% of TNBC patients have significant residual disease once NACT is completed, which is associated with a high risk of developing recurrence within two to three years of surgical resection. To identify targetable vulnerabilities in chemoresistant TNBC, we generated longitudinal patient-derived xenograft (PDX) models from TNBC tumors before and after patients received NACT. We then compiled transcriptomes and drug response profiles for all models. Transcriptomic analysis identified the enrichment of aberrant protein homeostasis pathways in models from post-NACT tumors relative to pre-NACT tumors. This observation correlated with increased sensitivity in vitro to inhibitors targeting the proteasome, heat shock proteins, and neddylation pathways. Pevonedistat, a drug annotated as a NEDD8-activating enzyme (NAE) inhibitor, was prioritized for validation in vivo and demonstrated efficacy as a single agent in multiple PDX models of TNBC. Pharmacotranscriptomic analysis identified a pathway-level correlation between pevonedistat activity and post-translational modification (PTM) machinery, particularly involving neddylation and sumoylation targets. Elevated levels of both NEDD8 and SUMO1 were observed in models exhibiting a favorable response to pevonedistat compared to those with a less favorable response in vivo. Moreover, a correlation emerged between the expression of neddylation-regulated pathways and tumor response to pevonedistat, indicating that targeting these PTM pathways may prove effective in combating chemoresistant TNBC.
RESUMO
We report a case of pneumocystis jiroveci pneumonia (PJP) in a 46-year-old woman, who previously underwent kidney transplant for chronic renal failure. She did not receive PJP prophylaxis treatment for the history of sulfonamide allergies. Four months after renal transplantation, the patient had cough, chest tightness, and shortness of breath. Procalcitonin (PCT) (0.06 ng/mL) and C-reactive protein (CRP) (5.33 mg/L) were normal, but the level of 1, 3-ß-D-glucan test (G test, 193.89 pg/mL) were elevated. Metagenomics next-generation sequencing (mNGS) using bronchoalveolar lavage fluid (BALF) rapidly and accurately identified P. jiroveci. Through sulfonamide desensitization and sulfamethoxazole-trimethoprim (TMP-SMX) combined with caspofungin (CAS) treatment, PJP was controlled. However, the patients' conditions were worsen for the hospital-acquired secondary pulmonary infection. A second BALF mNGS identified Enterobacter cloacae complex and Pseudomonas aeruginosa carrying carbapenem drug resistance genes, which were confirmed by subsequent culture and antimicrobial susceptibility test within 3 days. Finally, symptoms, such as chest tightness, cough, and shortness of breath, were improved and she was discharged after combined treatment with meropenem (MEM), polymyxin B (PMB), CAS, and TMP-SMX. In this case, mNGS, culture, and drug susceptibility testing were combined to monitor pathogenic microbial and adjust medication. At present, there are no case reports of mNGS use and sulfonamide desensitization in a kidney transplant recipient with sulfonamide allergies.
RESUMO
BACKGROUND: Rather than surgical resection, cytologic specimens are often used as first-line clinical diagnostic procedures due to higher safety, speed, and cost-effectiveness. Archival diagnostic cytology slides containing cancer can be equivalent to tissue biopsies for DNA mutation testing, but the accuracy of transcriptomic profiling by RNA sequencing (RNA-seq) is less understood. METHODS: This study compares the results from whole transcriptome RNA-seq and a targeted RNA-seq assay of stained cytology smears (CS) versus matched tumor tissue samples preserved fresh-frozen (FF) and processed as formalin-fixed paraffin-embedded (FFPE) sections. Cellular cytology scrapes from all 11 breast cancers were fixed and stained using three common protocols: Carnoy's (CS_C) or 95% ethanol (CS_E) fixation and then Papanicolaou stain or air-dried then methanol fixation and DiffQuik stain (CS_DQ). Agreement between samples was assessed using Lin's concordance correlation coefficient. RESULTS: Library yield for CS_DQ was too low, therefore it was not sequenced. The distributions of concordance correlation coefficient of gene expression levels in comparison to FF were comparable between CS_C and CS_E, but expression of genes enriched in stroma was lower in cytosmear samples than in FF or FFPE. Six signatures showed similar concordance to FF for all methods and two were slightly worse in CS_C and CS_E. Genomic signatures were highly concordant using targeted RNA-seq. The allele fraction of selected mutations calculated on cytosmear specimens was highly correlated with FF tissues using both RNA-seq methods. CONCLUSION: RNA can be reliably extracted from cytology smears and is suitable for transcriptome profiling or mutation detection, except for signatures of tumor stroma.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transcriptoma , Fixação de Tecidos/métodos , Formaldeído , RNA/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Inclusão em Parafina/métodosRESUMO
INTRODUCTION: RNA sequencing (RNAseq) analysis is emerging as a clinical research or diagnostic approach for cytologic samples, but there is need for formal comparison of different sample preparation methods in the cytology laboratory to identify which pre-analytic methods could provide alternatives to formalin-fixed paraffin-embedded (FFPE) sections. MATERIALS AND METHODS: We prepared 13 malignant effusions (metastatic estrogen receptor-positive breast cancer) in the cytology laboratory using 6 routine cytologic methods: FFPE cell block, Carnoy's solution, 95% ethanol (EtOH), air-dried and Diff-Quik, ThinPrep, and SurePath preparations. Measurements of RNA quality, expression of 2 multigene expression signatures, molecular subtype, and 4 common activating mutation sites in each preparation were compared with fresh frozen (FF) cell pellet in RNA preservative using distribution of fragment length and concordance correlation coefficient (CCC). RESULTS: The fraction of RNA fragments measuring 200 bases or more (DV200) were 24% higher from cytospins fixed in Carnoy's solution or 95% EtOH than DV200 from FFPE cell blocks. SurePath samples failed RNAseq quality control. There was high concordance of gene expression measurements with FF samples using cytospins fixed in Carnoy's solution, 95% EtOH, Diff-Quik (CCC = 0.829, 0.812, 0.760, respectively), or ThinPrep (CCC = 0.736), but lower using FFPE cell block (CCC = 0.564). The proportion of mutant transcripts was concordant between FF and any cytologic preparation methods. CONCLUSIONS: Cytospin preparations fixed with Carnoy's or 95% ETOH then Papanicolaou stained produced RNAseq results that were equivalent to FF samples and superior to FFPE cell block sections.
Assuntos
Ácido Acético , Líquidos Corporais , Humanos , Clorofórmio , RNA/genéticaRESUMO
Patient-derived xenograft (PDX) models of breast cancer are an effective discovery platform and tool for preclinical pharmacologic testing and biomarker identification. We established orthotopic PDX models of triple negative breast cancer (TNBC) from the primary breast tumors of patients prior to and following neoadjuvant chemotherapy (NACT) while they were enrolled in the ARTEMIS trial (NCT02276443). Serial biopsies were obtained from patients prior to treatment (pre-NACT), from poorly responsive disease after four cycles of Adriamycin and cyclophosphamide (AC, mid-NACT), and in cases of AC-resistance, after a 3-month course of different experimental therapies and/or additional chemotherapy (post-NACT). Our study cohort includes a total of 269 fine needle aspirates (FNAs) from 217 women, generating a total of 62 PDX models (overall success-rate = 23%). Success of PDX engraftment was generally higher from those cancers that proved to be treatment-resistant, whether poorly responsive to AC as determined by ultrasound measurements mid-NACT (p = 0.063), RCB II/III status after NACT (p = 0.046), or metastatic relapse within 2 years of surgery (p = 0.008). TNBC molecular subtype determined from gene expression microarrays of pre-NACT tumors revealed no significant association with PDX engraftment rate (p = 0.877). Finally, we developed a statistical model predictive of PDX engraftment using percent Ki67 positive cells in the patient's diagnostic biopsy, positive lymph node status at diagnosis, and low volumetric reduction of the patient's tumor following AC treatment. This novel bank of 62 PDX models of TNBC provides a valuable resource for biomarker discovery and preclinical therapeutic trials aimed at improving neoadjuvant response rates for patients with TNBC.
RESUMO
There is a clinical need to predict sensitivity of metastatic hormone receptor-positive and HER2-negative (HR+/HER2-) breast cancer to endocrine therapy, and targeted RNA sequencing (RNAseq) offers diagnostic potential to measure both transcriptional activity and functional mutation. We developed the SETER/PR index to measure gene expression microarray probe sets that were correlated with hormone receptors (ESR1 and PGR) and robust to preanalytical and analytical influences. We tested SETER/PR index in biopsies of metastastic HR+/HER2- breast cancer against the treatment outcomes in 140 patients. Then we customized the SETER/PR assay to measure 18 informative, 10 reference transcripts, and sequence the ligand-binding domain (LBD) of ESR1 using droplet-based targeted RNAseq, and tested that in residual RNA from 53 patients. Higher SETER/PR index in metastatic samples predicted longer PFS and OS when patients received endocrine therapy as next treatment, even after adjustment for clinical-pathologic risk factors (PFS: HR 0.534, 95% CI 0.299 to 0.955, p = 0.035; OS: HR 0.315, 95% CI 0.157 to 0.631, p = 0.001). Mutated ESR1 LBD was detected in 8/53 (15%) of metastases, involving 1-98% of ESR1 transcripts (all had high SETER/PR index). A signature based on probe sets with good preanalytical and analytical performance facilitated our customization of an accurate targeted RNAseq assay to measure both phenotype and genotype of ER-related transcription. Elevated SETER/PR was associated with prolonged sensitivity to endocrine therapy in patients with metastatic HR+/HER2- breast cancer, especially in the absence of mutated ESR1 transcript.
RESUMO
How higher organisms respond to elevated oxidative stress in vivo is poorly understood. Therefore, we measured oxidative stress parameters and gene expression alterations (Affymetrix arrays) in the liver caused by elevated reactive oxygen species induced in vivo by diquat or by genetic ablation of the major antioxidant enzymes CuZn-superoxide dismutase (Sod1) and glutathione peroxidase-1 (Gpx1). Diquat (50 mg/kg) treatment resulted in a significant increase in oxidative damage within 3-6 h in wild-type mice without any lethality. In contrast, treatment of Sod1(-/-) or Gpx1(-/-) mice with a similar concentration of diquat resulted in a significant increase in oxidative damage within an hour of treatment and was lethal, i.e., these mice are extremely sensitive to the oxidative stress generated by diquat. The expression response to elevated oxidative stress in vivo does not involve an upregulation of classic antioxidant genes, although long-term oxidative stress in Sod1(-/-) mice leads to a significant upregulation of thiol antioxidants (e.g., Mt1, Srxn1, Gclc, Txnrd1), which appears to be mediated by the redox-sensitive transcription factor Nrf2. The main finding of our study is that the common response to elevated oxidative stress with diquat treatment in wild-type, Gpx1(-/-), and Sod1(-/-) mice and in untreated Sod1(-/-) mice is an upregulation of p53 target genes (p21, Gdf15, Plk3, Atf3, Trp53inp1, Ddit4, Gadd45a, Btg2, Ndrg1). A retrospective comparison with previous studies shows that induction of these p53 target genes is a conserved expression response to oxidative stress, in vivo and in vitro, in different species and different cells/organs.
Assuntos
Perfilação da Expressão Gênica , Estresse Oxidativo/genética , Animais , Antioxidantes/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , DNA/metabolismo , Diquat/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/deficiência , Peroxidação de Lipídeos/efeitos dos fármacos , Hepatopatias/enzimologia , Hepatopatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Superóxido Dismutase/deficiência , Proteína Supressora de Tumor p53/metabolismo , Glutationa Peroxidase GPX1RESUMO
PURPOSE: Accurate transcriptional sequencing (RNA-seq) from formalin-fixation and paraffin-embedding (FFPE) tumor samples presents an important challenge for translational research and diagnostic development. In addition, there are now several different protocols to prepare a sequencing library from total RNA. We evaluated the accuracy of RNA-seq data generated from FFPE samples in terms of expression profiling. METHODS: We designed a biospecimen study to directly compare gene expression results from different protocols to prepare libraries for RNA-seq from human breast cancer tissues, with randomization to fresh-frozen (FF) or FFPE conditions. The protocols were compared using multiple computational methods to assess alignment of reads to reference genome, and the uniformity and continuity of coverage; as well as the variance and correlation, of overall gene expression and patterns of measuring coding sequence, phenotypic patterns of gene expression, and measurements from representative multigene signatures. RESULTS: The principal determinant of variance in gene expression was use of exon capture probes, followed by the conditions of preservation (FF versus FFPE), and phenotypic differences between breast cancers. One protocol, with RNase H-based rRNA depletion, exhibited least variability of gene expression measurements, strongest correlation between FF and FFPE samples, and was generally representative of the transcriptome from standard FF RNA-seq protocols. CONCLUSION: Method of RNA-seq library preparation from FFPE samples had marked effect on the accuracy of gene expression measurement compared to matched FF samples. Nevertheless, some protocols produced highly concordant expression data from FFPE RNA-seq data, compared to RNA-seq results from matched frozen samples.
RESUMO
Aging alters the expression of a variety of genes. Calorie restriction (CR), which extends life span in laboratory rodents, also changes gene expression. This study investigated changes in gene expression across three different tissues from the same mouse to examine how aging and early stage CR influence gene expression in different tissues of an organism. Expression profiling of heart, liver, and hypothalamus tissues was done in young (4-6 months) ad libitum fed (AL), young CR (2.5-4.5 months of CR), and old (26-28 months) AL male C57BL/6 mice. Aging significantly altered the expressions of 309, 1819, and 1085 genes in heart, liver, and hypothalamus tissues, respectively. In nine genes, aging altered expression across all three tissues although the regulation directions did not agree across all three tissues for some genes. Early stage CR in young mice significantly changed the expressions of 192, 839, and 100 genes in heart, liver, and hypothalamus tissues, respectively, and seven genes altered expression across all three tissues; three were up regulated and four were down regulated. The results of Gene Ontology (GO) Biological Process analysis indicated up regulation of antigen processing/presentation genes by aging and down regulation of stress response genes by early stage CR in all three tissues. The comparison of the results of aging and short term CR studies showed there were 389 genes, 18 GO biological processes, and 20 GO molecular functions in common.
Assuntos
Envelhecimento/metabolismo , Restrição Calórica , Regulação para Baixo , Regulação para Cima , Envelhecimento/genética , Animais , Ingestão de Energia/genética , Perfilação da Expressão Gênica , Masculino , Camundongos , Análise de Sequência com Séries de OligonucleotídeosRESUMO
Relative real-time reverse transcription PCR (RT-PCR) has become an important tool for quantifying changes in messenger RNA (mRNA) populations following differential development or stimulation of tissues or cells. However, the best methods for conducting such experiments and analyzing the resultant data remain an issue of discussion. In this report we describe an appropriate experimental methodology and the computer programs necessary to generate a meaningful statistical analysis of the combined biological and experimental variability in such experiments. Specifically, logarithmic transformations of raw fluorescence data from the log-linear portion of real-time PCR growth curves for both target and reference genes are analyzed using a SAS/STAT Mixed Procedure program specifically designed to give a point estimate of the relative expression ratio of the target gene with associated 95% confidence interval. The program code is open-source and is printed in the text.
Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Fígado/metabolismo , Linguagens de Programação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Software , Interface Usuário-Computador , Animais , Restrição Calórica/métodos , Camundongos , Sistemas On-Line , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Molecular events linking the initial detection of calorie restriction (CR) to changes in gene expression throughout the organism that ultimately retard aging in CR animals are unknown. This study measured changes in gene expression induced by CR and by aging in the hypothalamus, which likely plays a central role in the initial perception of and response to CR. Hypothalamic expression profiling was done in young (4-6 months) ad libitum fed (AL), young CR (2.5-4.5 months of CR), and old (26-28 months) AL male C57BL/6 mice. CR altered the expression of 137 genes and aging altered 1222. Only 8 age-related genes were oppositely regulated by CR. To test whether reduced plasma glucose is a signal in altering hypothalamic gene expression, we examined GLUT4 transgenic mice (C57BL/6 background; 4-6 months), which have reduced plasma glucose similar to that of CR mice. Twenty-seven genes differed between transgenic and non-transgenic mice; nine of these were only altered by CR. The decreased plasma glucose had a limited role in CR mediated hypothalamic gene expression.
Assuntos
Envelhecimento/fisiologia , Restrição Calórica , Regulação da Expressão Gênica/fisiologia , Expressão Gênica/genética , Hipotálamo/metabolismo , Animais , Transportador de Glucose Tipo 4/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodosRESUMO
Because food restriction (FR) has a profound effect on most tissues, it is plausible that the modulation of aging by FR occurs through cellular processes such as gene expression. The effect of FR in lowering plasma glucose levels has been demonstrated in mice, rats, and nonhuman primates. The consistency of this finding suggests that decreased plasma glucose may be an important consequence of FR. Indeed, lowering plasma glucose in the absence of FR would be expected to change the expression of some of the same genes as seen with FR. GLUT4 transgenic (TG) mice were particularly suited to this examination because they have low plasma glucose levels like FR mice. We investigated altered gene expression by FR and the effect of low plasma glucose levels caused by genetic manipulation by measuring mRNA expression in liver tissues of 4- to 6-mo-old mice with 2.5-4.5 mo of FR using microarrays and 4 groups: GLUT4 TG (C57BL/6 background) consumed food ad libitum (AL), GLUT4 TG FR, wild-type littermates AL, and wild-type littermates FR. The 3 statistical analysis methods commonly indicated that FR altered the expression of 1277 genes; however, none of these genes was altered by additional GLUT4 expression. In fact, the low plasma glucose level in GLUT4 TG mice did not affect gene expression. Some results were confirmed by real-time quantitative RT-PCR. We conclude that a low plasma glucose level does not contribute to or coincide with the effect of FR on gene expression in the liver.