Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 23(14): 3681-94, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24556217

RESUMO

Inclusion body myositis (IBM), a degenerative and inflammatory disorder of skeletal muscle, and Alzheimer's disease share protein derangements and attrition of postmitotic cells. Overexpression of cyclins and proliferating cell nuclear antigen (PCNA) and evidence for DNA replication is reported in Alzheimer's disease brain, possibly contributing to neuronal death. It is unknown whether aberrant cell cycle reentry also occurs in IBM. We examined cell cycle markers in IBM compared with normal control, polymyositis (PM) and non-inflammatory dystrophy sample sets. Next, we tested for evidence of reentry and DNA synthesis in C2C12 myotubes induced to express ß-amyloid (Aß42). We observed increased levels of Ki-67, PCNA and cyclins E/D1 in IBM compared with normals and non-inflammatory conditions. Interestingly, PM samples displayed similar increases. Satellite cell markers did not correlate with Ki-67-affected myofiber nuclei. DNA synthesis and cell cycle markers were induced in Aß-bearing myotubes. Cell cycle marker and cyclin protein expressions were also induced in an experimental allergic myositis-like model of PM in mice. Levels of p21 (Cip1/WAF1), a cyclin-dependent kinase inhibitor, were decreased in affected myotubes. However, overexpression of p21 did not rescue cells from Aß-induced toxicity. This is the first report of cell cycle reentry in human myositis. The absence of rescue and evidence for reentry in separate models of myodegeneration and inflammation suggest that new DNA synthesis may be a reactive response to either or both stressors.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Fragmentos de Peptídeos/metabolismo , Polimiosite/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL
2.
Neurobiol Dis ; 46(2): 463-75, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22590725

RESUMO

Skeletal muscle atrophy can occur rapidly in various fasting, cancerous, systemic inflammatory, deranged metabolic or neurogenic states. The ubiquitin ligase Atrogin-1 (MAFbx) is induced in animal models of these conditions, causing excessive myoprotein degradation. It is unknown if Atrogin upregulation also occurs in acquired human myositis. Intracellular ß-amyloid (Aßi), phosphorylated neurofilaments, scattered infiltrates and atrophy involving selective muscle groups characterize human sporadic Inclusion Body Myositis (sIBM). In Polymyositis (PM), inflammation is more pronounced and atrophy is symmetric and proximal. IBM and PM share various inflammatory markers. We found that forkhead family transcription factor Foxo3A is directed to the nucleus and Atrogin-1 transcript is increased in both conditions. Expression of Aß in transgenic mice and differentiated C2C12 myotubes was sufficient to upregulate Atrogin-1 mRNA and cause atrophy. Aßi reduces levels of p-Akt and downstream p-Foxo3A, resulting in Foxo3A translocation and Atrogin-1 induction. In a mouse model of autoimmune myositis, cellular inflammation alone was associated with similar Foxo3A and Atrogin changes. Thus, either Aßi accumulation or cellular immune stimulation may independently drive muscle atrophy in sIBM and PM, respectively, through pathways converging on Foxo and Atrogin-1. In sIBM it is additionally possible that both mechanisms synergize.


Assuntos
Fatores de Transcrição Forkhead/biossíntese , Proteínas Musculares/biossíntese , Miosite/metabolismo , Proteínas Ligases SKP Culina F-Box/biossíntese , Animais , Linhagem Celular Tumoral , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Musculares/genética , Miosite/genética , Miosite/patologia , Transporte Proteico/genética , Proteínas Ligases SKP Culina F-Box/genética
3.
J Neurosci Res ; 88(1): 167-78, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19610108

RESUMO

The significance of intracellular beta-amyloid (Abeta(42)) accumulation is increasingly recognized in Alzheimer's disease (AD) pathogenesis. Abeta removal mechanisms that have attracted attention include IDE/neprilysin degradation and antibody-mediated uptake by immune cells. However, the role of the ubiquitin-proteasome system (UPS) in the disposal of cellular Abeta has not been fully explored. The E3 ubiquitin ligase Parkin targets several proteins for UPS degradation, and Parkin mutations are the major cause of autosomal recessive Parkinson's disease. We tested whether Parkin has cross-function to target misfolded proteins in AD for proteasome-dependent clearance in SH-SY5Y and primary neuronal cells. Wild-type Parkin greatly decreased steady-state levels of intracellular Abeta(42), an action abrogated by proteasome inhibitors. Intracellular Abeta(42) accumulation decreased cell viability and proteasome activity. Accordingly, Parkin reversed both effects. Changes in mitochondrial ATP production from Abeta or Parkin did not account for their effects on the proteasome. Parkin knock-down led to accumulation of Abeta. In AD brain, Parkin was found to interact with Abeta and its levels were reduced. Thus, Parkin is cytoprotective, partially by increasing the removal of cellular Abeta through a proteasome-dependent pathway.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Citoproteção/fisiologia , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Imunofluorescência , Humanos , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Transfecção , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
FASEB J ; 20(12): 2165-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16940437

RESUMO

Intracellular deposition of the beta-amyloid (Abeta) peptide is an increasingly recognized pathological hallmark associated with neurodegeneration and muscle wasting in Alzheimer's disease (AD) and inclusion body myositis (IBM), respectively. Previous reports have implicated dysregulation of beta-amyloid precursor protein (betaAPP) expression in IBM. Accumulation of full-length betaAPP, its various proteolytic derivatives including Abeta, and phospho-tau into vacuolated inclusions is an early pathogenic event. We previously reported on a statistical tendency favoring fast twitch fiber involvement in IBM, reminiscent of the tissue specific patterns of misfolded protein deposition seen in neurodegenerative diseases. To test this principle, we generated an animal model in which human wild-type (WT) betaAPP expression was limited to postnatal type II skeletal muscle. Hemizygous transgenic mice harboring increased levels of holo betaAPP751 and Abeta in skeletal muscle fibers became significantly weaker with age compared with nontransgenic littermates and exhibited typical myopathic features. A subpopulation of dissociated muscle fibers from transgenic mice exhibited a 2-fold increase in resting calcium and membrane depolarization compared with nontransgenic littermates. Taken together, these data indicate that overexpression of human betaAPP in fast twitch skeletal muscle of transgenic mice is sufficient for the development of some features characteristic of IBM, including abnormal tau histochemistry. The increase in resting calcium and depolarization are novel findings, suggesting both a mechanism for the weakness and an avenue for therapeutic intervention in IBM.


Assuntos
Precursor de Proteína beta-Amiloide/farmacologia , Cálcio/metabolismo , Fibras Musculares de Contração Rápida/patologia , Miosite de Corpos de Inclusão/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Homeostase/efeitos dos fármacos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fibras Musculares de Contração Rápida/ultraestrutura , Músculo Esquelético/metabolismo , Distribuição Tecidual
5.
Mol Biol Cell ; 20(5): 1533-44, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19144826

RESUMO

Intraneuronal beta-amyloid (Abeta(i)) accumulates early in Alzheimer's disease (AD) and inclusion body myositis. Several organelles, receptor molecules, homeostatic processes, and signal transduction components have been identified as sensitive to Abeta. Although prior studies implicate the insulin-PI3K-Akt signaling cascade, a specific step within this or any essential metabolic or survival pathway has not emerged as a molecular target. We tested the effect of Abeta42 on each component of this cascade. In AD brain, the association between PDK and Akt, phospho-Akt levels and its activity were all decreased relative to control. In cell culture, Abeta(i) expression inhibited both insulin-induced Akt phosphorylation and activity. In vitro experiments identified that beta-amyloid (Abeta), especially oligomer preparations, specifically interrupted the PDK-dependent activation of Akt. Abeta(i) also blocked the association between PDK and Akt in cell-based and in vitro experiments. Importantly, Abeta did not interrupt Akt or PI3K activities (once stimulated) nor did it affect more proximal signal events. These results offer a novel therapeutic strategy to neutralize Abeta-induced energy failure and neuronal death.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/fisiologia , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose , Linhagem Celular , Ativação Enzimática , Humanos , Proteínas Imediatamente Precoces/fisiologia , Camundongos , Fragmentos de Peptídeos/metabolismo , Fosfatos de Fosfatidilinositol/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Piruvato Desidrogenase Quinase de Transferência de Acetil
6.
J Biol Chem ; 281(18): 12809-16, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16517603

RESUMO

Mutations in the ubiquitin ligase-encoding Parkin gene have been implicated in the pathogenesis of autosomal recessive Parkinson disease. Outside of the central nervous system, Parkin is prominently expressed in skeletal muscle. We have found accumulations of Parkin protein in skeletal muscle biopsies taken from patients with inclusion body myositis, a degenerative disorder in which intramyofiber accumulations of the beta-amyloid peptide are pathognomonic. In comparing primary cultures of skeletal muscle derived from parkin knock-out and wild-type mice, we have found the absence of parkin to result in greater sensitivity to mitochondrial stressors rotenone and carbonyl cyanide 3-chlorophenylhydrazone, without any alteration in sensitivity to calcium ionophore or hydrogen peroxide. Utilizing viral expression constructs coding for the Alzheimer disease and inclusion body myositis-linked beta-amyloid precursor protein and for its metabolic byproducts A beta42 and C100, we found that parkin knock-out muscle cells are also more sensitive to the toxic effects of intracellular A beta. We also constructed a lentiviral system to overexpress wild-type Parkin and have shown that boosting the levels of parkin expression in normal skeletal muscle cultures provides substantial protection against both mitochondrial toxins and overexpressed beta-amyloid. Correspondingly, exogenous Parkin significantly lowered A beta levels. These data support the hypothesis that in myocytes parkin has dual properties in the maintenance of skeletal muscle mitochondrial homeostasis and in the regulation of A beta levels.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Cálcio/metabolismo , Morte Celular , Hidrazonas/farmacologia , Insulina/metabolismo , Ionóforos/farmacologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Rotenona/farmacologia
7.
J Neurophysiol ; 94(1): 377-86, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15985697

RESUMO

Ca2+ indicators of varying affinity and mobility were pressure injected into the presynaptic axon of the inhibitor of the crayfish neuromuscular junction (NMJ). Fluorescence transients recorded at a 2-kHz resolution were used to probe physiological parameters governing the decay of fluorescence transients within 100 ms after an action potential (early decay). Blocking Ca2+ extrusion or Ca2+ sequestration processes did not significantly alter early decay, arguing against a role for either mechanism. Fluorescence transients recorded with low mobility or fixed indicators exhibited early decay similar to that recorded with indicators of comparable affinity but high mobility, suggesting that early decay was not due to the rate of Ca2+-indicator diffusion. The extent of early decay correlated closely with the affinity, but not mobility, of the Ca2+ sensitive dyes tested. These results implicate intrinsic buffers with slow Ca2+ binding kinetics as the most likely determinants of early decay. However, computer simulations showed that intrinsic buffers with a slow binding rate are unlikely to be the only ones present in the system because the slow kinetics would be unable to buffer incoming Ca2+ during an action potential and would result in momentary indicator saturation. In fact, experimental data show that the peak amplitude of an action potential activated Ca+ transient is about 20% of the maximal fluorescence intensity activated by prolonged Ca2+ influx. We conclude that endogenous buffering at the crayfish NMJ includes both fast and slow components, the former being fast enough to compete with fast Ca2+ indicators, and the latter dictating the early decay.


Assuntos
Soluções Tampão , Cálcio/metabolismo , Clonazepam/análogos & derivados , Corantes Fluorescentes/farmacocinética , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Tioureia/análogos & derivados , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Astacoidea , Clonazepam/farmacologia , Simulação por Computador , Diagnóstico por Imagem/métodos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Lítio/metabolismo , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Inibição Neural/efeitos da radiação , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/efeitos da radiação , Terminações Pré-Sinápticas/efeitos dos fármacos , Sódio/metabolismo , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tapsigargina/farmacologia , Tiazepinas/farmacologia , Tioureia/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA