Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochem Biophys Res Commun ; 594: 109-116, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35081499

RESUMO

HIC1 and RassF1A methylation, which cause loss of gene function, are found in various cancers, including renal cell carcinoma (RCC), and could alter cell stiffness and the content of extracellular vesicles (EVs). These physiological changes may provide a tumoral survival advantage and thus could serve as cellular biomarkers for monitoring cell transformation, although direct associations between these changes and cell transformation remain to be established. As we found HIC1 and RassF1A methylation and expression changes in RCC samples, we examined the effects of gain and loss of HIC1 and RassF1A expression on cell DNA content, cytoskeletal structure, and Piwi-interacting RNA (piRNA) expression in EVs. We found HIC1 and RassF1A hypermethylation and abnormal expression in RCC patient samples was independent of the somatic mutations found in publicly available data. Cell stiffness was reduced in accordance with disrupted cytoskeleton conformation after knockdown of HIC1 or RassF1A. Gain or loss of HIC1 expression induced instability in genomic content, abnormal RassF1A expression disturbed cytoskeletal structure, and the abnormal expression of either gene altered piRNA content in EVs. These results suggest a causal relationship between abnormal tumor suppressor gene expression, cell stiffness, and piRNA expression.


Assuntos
Citoesqueleto/metabolismo , Exossomos , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Biomarcadores , Carcinoma de Células Renais/metabolismo , Transformação Celular Neoplásica , DNA/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Genoma Humano , Humanos , Técnicas In Vitro , Neoplasias Renais/metabolismo , Células-Tronco Mesenquimais/citologia , Microscopia de Força Atômica , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética
2.
Int J Mol Sci ; 19(10)2018 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-30249017

RESUMO

Cell stiffness is a potential biomarker for monitoring cellular transformation, metastasis, and drug resistance development. Environmental factors relayed into the cell may result in formation of inheritable markers (e.g., DNA methylation), which provide selectable advantages (e.g., tumor development-favoring changes in cell stiffness). We previously demonstrated that targeted methylation of two tumor suppressor genes, hypermethylated in cancer 1 (HIC1) and Ras-association domain family member 1A (RassF1A), transformed mesenchymal stem cells (MSCs). Here, transformation-associated cytoskeleton and cell stiffness changes were evaluated. Atomic force microscopy (AFM) was used to detect cell stiffness, and immunostaining was used to measure cytoskeleton expression and distribution in cultured cells as well as in vivo. HIC1 and RassF1A methylation (me_HR)-transformed MSCs developed into tumors that clonally expanded in vivo. In me_HR-transformed MSCs, cell stiffness was lost, tubulin expression decreased, and F-actin was disorganized; DNA methylation inhibitor treatment suppressed their tumor progression, but did not fully restore their F-actin organization and stiffness. Thus, me_HR-induced cell transformation was accompanied by the loss of cellular stiffness, suggesting that somatic epigenetic changes provide inheritable selection markers during tumor propagation, but inhibition of oncogenic aberrant DNA methylation cannot restore cellular stiffness fully. Therefore, cell stiffness is a candidate biomarker for cells' physiological status.


Assuntos
Metilação de DNA , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Células-Tronco Mesenquimais/patologia , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Apoptose , Biomarcadores Tumorais , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Hepáticas/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Prognóstico , Regiões Promotoras Genéticas , Estresse Mecânico , Tubulina (Proteína)/genética , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
ACS Omega ; 7(16): 13622-13628, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559149

RESUMO

The semiconductor industry continues to shrink the device sizes while applying more complex shapes and using diverse materials, which requires parallel improvements in the quality of ultrapure reagents. The need for ultrapure reagents has led to ever-higher demands for the performance of analytical instruments used to detect ultratrace impurities. In this study, nonvolatile impurities in ultrapure reagents were quantified using a scanning mobility particle sizer (SMPS). The performances of three different sample introduction systems, i.e., an electrospray (ES), an aerosol generator with a heating chamber and a Nafion desolvation membrane (NB-II), and a MicroMist nebulizer with a heated cyclonic spray chamber and a three-stage Peltier-cooled desolvation system (MM-APEX), were evaluated for the lower limit of detection of a SMPS. The MM-APEX equipped with the SMPS was able to detect NaCl additives at a concentration of 100 parts per trillion (ppt, ng/L) in ultrapure water, which was approximately 104- and 102-fold lower than those of ES and NB-II, respectively. The practical application of MM-APEX with the SMPS for commercial isopropanol samples was also studied. The results clearly demonstrate that the impurity concentrations presented by the NaCl-equivalent concentrations among different sources of isopropanol were at the ppt to parts-to-billion (ppb) scale. The SMPS system equipped with MM-APEX is capable of recognizing impurities with concentrations ranging from tens ppt to thousands of parts per million (ppm), which is beneficial for an ultratrace analysis of nonvolatile impurities in semiconductor process chemicals.

4.
Nanomaterials (Basel) ; 10(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784585

RESUMO

The notion of an effective longitudinal coherence length with its value much greater than λ2/(2Δλ) has been adopted in small-angle X-ray scattering communities for years, where λ and Δλ denote the incident wavelength and its spread, respectively. Often the implications of the effective longitudinal coherence length do not even enter considerations in the designing and data treatment of small-angle scattering experiments. In this work, conventional transmission small-angle X-ray scattering (tSAXS) was performed to reveal a clear angular dependence on effective longitudinal coherence length. The measured values of effective longitudinal coherence length can be as high as one millimeter, whereas the value of calculated λ2/(2Δλ) is in nanometers.

5.
Nanomaterials (Basel) ; 9(5)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035555

RESUMO

Health risks posed by the exposure to trace amounts of pesticide residue in agricultural products have gained a lot of concerns, due to their neurotoxic nature. The applications of surface-enhanced Raman Scattering (SERS) as a detection technique have consistently shown its potential as a rapid and sensitive means with minimal sample preparation. In this study, gold nanoparticles (Au NPs) in elliptical shapes were collected into a layer of ordered zirconia concave pores. The porous zirconia layer (pZrO2) was then deposited with Au NPs, denoted as Au NPs (x)/pZrO2, where x indicates the deposition thickness of Au NPs in nm. In the concave structure of pZrO2, Au-ZrO2 and Au-Au interactions provide a synergistic and physical mechanism of SERS, which is anticipated to collect and amplify SERS signals and thereafter improve the enhancement factor (EF) of Au NPs/pZrO2. By taking Rhodamine 6G (R6G) as the test molecule, EF of Au NPs/pZrO2 might reach to 7.0 × 107. Au NPs (3.0)/pZrO2 was then optimized and competent to detect pesticides, e.g., phosmet and carbaryl at very low concentrations, corresponding to the maximum residue limits of each, i.e., 0.3 ppm and 0.2 ppm, respectively. Au NPs (3.0)/pZrO2 also showed the effectiveness of distinguishing between phosmet and carbaryl under mixed conditions. Due to the strong affinities of the phosphoric groups and sulfur in phosmet to the Au NPs (3.0)/pZrO2, the substrate exhibited selective detection to this particular pesticide. In this study, Au NPs (3.0)/pZrO2 has thus demonstrated trace detection of residual pesticides, due to the substrate design that intended to provide collective amplification of SERS.

6.
Nanomaterials (Basel) ; 9(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835301

RESUMO

Nanostructures with spikes (NSPs) have been a subject of several surface-enhanced Raman scattering (SERS) applications owing to their significant Raman signal enhancement brought about by the combined effects of interspike coupling and the accumulated induction on the tips of spikes. Thus, NSPs offer great potential as a SERS-active substrate for relevant applications that require a high density of enhanced "hot spots". In this study, Ag NSPs were synthesized in varying degrees of agglomeration and were thereafter deposited onto a transparent adhesive tape as a flexible substrate for SERS applications, specifically, in the detection of trace amounts of pesticides. These flexible substrates were referred to as Ag NSPs/tape and optimized with an enhancement factor (EF) of ca. 1.7 × 107. A strong resulting signal enhancement could be attributed to an optimal degree of agglomeration and, consequently, the distances among/between spikes. Long spikes on the synthesized core of Ag NSPs tend to be loosely spaced, which are suitable in detecting relatively large molecules that could access the spaces among the spikes where "hot spots" are generally formed. Since one side of the transparent tape is adhesive, the paste-and-peel off method was successful in obtaining phosmet and carbaryl residues from apple peels as reflected in the acquired SERS spectra. In situ trace detection of the pesticides at low concentrations down to 10-7 M could be demonstrated. In situ trace detection of mixed pesticides was possible as the characteristic peaks of both pesticides were observed in equimolar mixtures of the analytes at 10-2 to 10-4 M. This study is, thus, premised upon applying for in situ trace detection on e.g., fruit skin.

7.
Nanomaterials (Basel) ; 8(12)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486259

RESUMO

Strontium oxide (SrO) deposited onto a porous titanium (Ti)-based scaffold (P-Ti) is a promising and novel approach for high-throughput transesterification. Notably, a highly porous and calcinated scaffold provides a load-bearable support for a continuous process, while the calcinated SrO catalyst, as it is well distributed inside the porous matrix, can extend its surface contact area with the reactant. In this work, the formation of transesterification reaction with the conversion and production of olive oil to biodiesel inside the porous matrix is particularly examined. The as-designed SrO-coated porous titanium (Ti)-based scaffold with 55% porosity was prepared via a hydrothermal procedure, followed by a dip coating method. Mechanical tests of samples were conducted by a nanoindentator, whereas the physical and chemical structures were identified by IR and Raman Spectroscopies. The results implied that SrO catalysts can be firmly deposited onto a load-bearable, highly porous matrix and play an effective role for the transesterification reaction with the oil mass. It is promising to be employed as a load-bearable support for a continuous transesterification process, such as a process for batch or continuous biodiesel production, under an efficient heating source by a focused microwave system.

8.
J Food Drug Anal ; 26(2): 628-636, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29567232

RESUMO

This study discusses the strategies on sample preparation to acquire images with sufficient quality for size characterization by scanning electron microscope (SEM) using two commercial ZnO nanoparticles of different surface properties as a demonstration. The central idea is that micrometer sized aggregates of ZnO in powdered forms need to firstly be broken down to nanosized particles through an appropriate process to generate nanoparticle dispersion before being deposited on a flat surface for SEM observation. Analytical tools such as contact angle, dynamic light scattering and zeta potential have been utilized to optimize the procedure for sample preparation and to check the quality of the results. Meanwhile, measurements of zeta potential values on flat surfaces also provide critical information and save lots of time and efforts in selection of suitable substrate for particles of different properties to be attracted and kept on the surface without further aggregation. This simple, low-cost methodology can be generally applied on size characterization of commercial ZnO nanoparticles with limited information from vendors.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Nanopartículas/química , Óxido de Zinco/química , Microscopia Eletrônica de Varredura/economia , Tamanho da Partícula , Propriedades de Superfície
9.
Nanomaterials (Basel) ; 8(6)2018 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-29865286

RESUMO

Trace detection of common pesticide residue is necessary to assure safety of fruit and vegetables, given that the potential health risk to consumers is attributed to the contamination of the sources. A simple, rapid and effective means of finding the residue is however required for household purposes. In recent years, the technique in association with surface-enhanced Raman scattering (SERS) has been well developed in particular for trace detection of target molecules. Herein, gold nanoparticles (Au NPs) were integrated with sol-gel spin-coated Zirconia nanofibers (ZrO2 NFs) as a chemically stable substrate and used for SERS application. The morphologies of Au NPs/ZrO2 NFs were adjusted by the precursor concentrations (_X, X = 0.05⁻0.5 M) and the effect of SERS on Au NPs/ZrO2 NFs_X was evaluated by different Raman laser wavelengths using rhodamine 6G as the probe molecule at low concentrations. The target pesticides, phosmet (P1), carbaryl (C1), permethrin (P2) and cypermethrin (C2) were thereafter tested and analyzed. Au NPs/ZrO2 NFs_0.3 exhibited an enhancement factor of 2.1 × 107, which could detect P1, C1, P2 and C2 at the concentrations down to 10-8, 10-7, 10-7 and 10-6 M, respectively. High selectivity to the organophosphates was also found. As the pesticides were dip-coated on an apple and then measured on the diluted juice containing sliced apple peels, the characteristic peaks of each pesticide could be clearly identified. It is thus promising to use NPs/ZrO2 NFs_0.3 as a novel SERS-active substrate for trace detection of pesticide residue upon, for example, fruits or vegetables.

10.
Appl Phys Lett ; 111(12)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29242646

RESUMO

Features sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering and of course the electron and scanning probe microscopy techniques. Each of these techniques have their advantages and limitations. Here the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.

11.
Biointerphases ; 11(4): 04B311, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27998155

RESUMO

The mechanical properties of the extracellular matrix play an important role in bio-microenvironment activities. Herein, atomic force microscope (AFM) was used to measure the interaction between Au and Ag nanoparticle (NP) clusters on the surface of human fetal lung cells. Using (3-mercapto-propyl) triethoxysilane (MPTMS), NP clusters were grafted onto the apex of AFM tip, and then, the adhesion force between the tip and the cell was analyzed. The measured adhesion force increased from 92 pN for AFM tip to 332 pN for that modified with MPTMS. The increase is most probably contributed by the nonspecific interactions between the apex of the modified AFM tip and the surface of the cells. The adhesion forces between the surface of NPs clusters grafted AFM tip and that of lung cells were dramatically reduced as NPs clusters were replaced by MPTMS. For the former, as the Au NPs cluster was applied, the adhesion force reached to 122 pN, whereas it significantly augmented with the addition of the cluster's size and dimension on the AFM tip. For the case of Ag cluster grafted on AFM tip, its adhesion force with the surface of the cells significantly lowered and reduced to 56 pN. Presumably, the electrostatic or van der Waals force between the two surfaces results in the variation of measurements. It is also very likely that the cell-surface interactions are probably varied by the nature of the contact surfaces, like the force-distance of attraction. The result is significant for understanding the the nature of the interactions between the surface of NPs and the membrane of lung cells.


Assuntos
Adesão Celular , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Ouro/metabolismo , Microscopia de Força Atômica/métodos , Nanopartículas/metabolismo , Prata/metabolismo , Células Cultivadas , Humanos
12.
J Mater Chem B ; 2(31): 5083-5092, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32261842

RESUMO

Biodegradable elastomers in the form of polyurethane nanoparticles (NPs) were successfully synthesized based on the combinations of two hydrolysis-prone polyester diols by a green water-based process. The anionic nature of the polymers successfully rendered polyurethane NPs (30-50 nm) consisting of approximately 200-300 polymer chains. The mechanical properties and degradation rate could be adjusted by the types and ratios of the component oligodiols in the soft segment. We demonstrated the feasibility using these biodegradable NPs as building blocks to generate self-assembled morphologies in nanometric, micrometric, or bulk scale, bearing excellent elasticity and biocompatibility. The elastic NPs and their various assembled forms represent a series of smart biodegradable elastomers with potential medical applications.

13.
Nanotoxicology ; 7(8): 1325-37, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23061887

RESUMO

The authors critically reviewed published lists of nano-objects and their physico-chemical properties deemed important for risk assessment and discussed metrological challenges associated with the development of nanoscale reference materials (RMs). Five lists were identified that contained 25 (classes of) nano-objects; only four (gold, silicon dioxide, silver, titanium dioxide) appeared on all lists. Twenty-three properties were identified for characterisation; only (specific) surface area appeared on all lists. The key themes that emerged from this review were: 1) various groups have prioritised nano-objects for development as "candidate RMs" with limited consensus; 2) a lack of harmonised terminology hinders accurate description of many nano-object properties; 3) many properties identified for characterisation are ill-defined or qualitative and hence are not metrologically traceable; 4) standardised protocols are critically needed for characterisation of nano-objects as delivered in relevant media and as administered to toxicological models; 5) the measurement processes being used to characterise a nano-object must be understood because instruments may measure a given sample in a different way; 6) appropriate RMs should be used for both accurate instrument calibration and for more general testing purposes (e.g., protocol validation); 7) there is a need to clarify that where RMs are not available, if "(representative) test materials" that lack reference or certified values may be useful for toxicology testing and 8) there is a need for consensus building within the nanotechnology and environmental, health and safety communities to prioritise RM needs and better define the required properties and (physical or chemical) forms of the candidate materials.


Assuntos
Segurança Química , Nanoestruturas , Nanotecnologia , Padrões de Referência , Exposição Ambiental , Nanoestruturas/efeitos adversos , Nanoestruturas/normas , Saúde Ocupacional , Risco , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA