Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Neuroinflammation ; 20(1): 270, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978532

RESUMO

BACKGROUND: Subarachnoid hemorrhage (SAH) is an uncommon type of potentially fatal stroke. The pathophysiological mechanisms of brain injury remain unclear, which hinders the development of drugs for SAH. We aimed to investigate the pathophysiological mechanisms of SAH and to elucidate the cellular and molecular biological response to SAH-induced injury. METHODS: A cross-species (human and mouse) multiomics approach combining high-throughput data and bioinformatic analysis was used to explore the key pathophysiological processes and cells involved in SAH-induced brain injury. Patient data were collected from the hospital (n = 712). SAH was established in adult male mice via endovascular perforation, and flow cytometry, a bone marrow chimera model, qPCR, and microglial depletion experiments were conducted to explore the origin and chemotaxis mechanism of the immune cells. To investigate cell effects on SAH prognosis, murine neurological function was evaluated based on a modified Garcia score, pole test, and rotarod test. RESULTS: The bioinformatics analysis confirmed that inflammatory and immune responses were the key pathophysiological processes after SAH. Significant increases in the monocyte levels were observed in both the mouse brains and the peripheral blood of patients after SAH. Ly6C-high monocytes originated in the bone marrow, and the skull bone marrow contribute a higher proportion of these monocytes than neutrophils. The mRNA level of Ccl2 was significantly upregulated after SAH and was greater in CD11b-positive than CD11b-negative cells. Microglial depletion, microglial inhibition, and CCL2 blockade reduced the numbers of Ly6C-high monocytes after SAH. With CCR2 antagonization, the neurological function of the mice exhibited a slow recovery. Three days post-SAH, the monocyte-derived dendritic cell (moDC) population had a higher proportion of TNF-α-positive cells and a lower proportion of IL-10-positive cells than the macrophage population. The ratio of moDCs to macrophages was higher on day 3 than on day 5 post-SAH. CONCLUSIONS: Inflammatory and immune responses are significantly involved in SAH-induced brain injury. Ly6C-high monocytes derived from the bone marrow, including the skull bone marrow, infiltrated into mouse brains via CCL2 secreted from microglia. Moreover, Ly6C-high monocytes alleviated neurological dysfunction after SAH.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos , Camundongos , Masculino , Animais , Monócitos , Hemorragia Subaracnóidea/complicações , Lesões Encefálicas/etiologia , Macrófagos , Camundongos Endogâmicos C57BL
2.
J Neuroinflammation ; 18(1): 184, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425835

RESUMO

BACKGROUND: White matter injury (WMI) is a major neuropathological event associated with intracerebral hemorrhage (ICH). P2X purinoreceptor 4 (P2X4R) is a member of the P2X purine receptor family, which plays a crucial role in regulating WMI and neuroinflammation in central nervous system (CNS) diseases. Our study investigated the role of P2X4R in the WMI and the inflammatory response in mice, as well as the possible mechanism of action after ICH. METHODS: ICH was induced in mice via collagenase injection. Mice were treated with 5-BDBD and ANA-12 to inhibit P2X4R and tropomyosin-related kinase receptor B (TrkB), respectively. Immunostaining and quantitative polymerase chain reaction (qPCR) were performed to detect microglial phenotypes after the inhibition of P2X4R. Western blots (WB) and immunostaining were used to examine WMI and the underlying molecular mechanisms. Cylinder, corner turn, wire hanging, and forelimb placement tests were conducted to evaluate neurobehavioral function. RESULTS: After ICH, the protein levels of P2X4R were upregulated, especially on day 7 after ICH, and were mainly located in the microglia. The inhibition of P2X4R via 5-BDBD promoted neurofunctional recovery after ICH as well as the transformation of the pro-inflammatory microglia induced by ICH into an anti-inflammatory phenotype, and attenuated ICH-induced WMI. Furthermore, we found that TrkB blockage can reverse the protective effects of WMI as well as neuroprotection after 5-BDBD treatment. This result indicates that P2X4R plays a crucial role in regulating WMI and neuroinflammation and that P2X4R inhibition may benefit patients with ICH. CONCLUSIONS: Our results demonstrated that P2X4R contributes to WMI by polarizing microglia into a pro-inflammatory phenotype after ICH. Furthermore, the inhibition of P2X4R promoted pro-inflammatory microglia polarization into an anti-inflammatory phenotype, enhanced brain-derived neurotrophic factor (BDNF) production, and through the BDNF/TrkB pathway, attenuated WMI and improved neurological function. Therefore, the regulation of P2X4R activation may be beneficial for the reducing of ICH-induced brain injury.


Assuntos
Hemorragia Cerebral/patologia , Microglia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Substância Branca/efeitos dos fármacos , Animais , Benzodiazepinonas/farmacologia , Hemorragia Cerebral/metabolismo , Modelos Animais de Doenças , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Proteínas Tirosina Quinases/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
3.
J Neuroinflammation ; 18(1): 210, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530854

RESUMO

BACKGROUND: Neuroinflammation and oxidative stress plays an important role in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study is the first to show that activation of autophagy protein nuclear receptor binding factor 2 (NRBF2) could reduce endoplasmic reticulum stress (ERS)-associated inflammation and oxidative stress after SAH. METHODS: Male C57BL/6J mice were subjected to endovascular perforation to establish a model of SAH. NRBF2 overexpression adeno-associated virus (AAV), NRBF2 small interfering RNAs (siRNA), lysosomal inhibitor-chloroquine (CQ), and late endosome GTPase Rab7 receptor antagonist-CID1067700 (CID) were used to investigate the role of NRBF2 in EBI after SAH. Neurological tests, brain water content, western blotting and immunofluorescence staining were evaluated. RESULTS: Our study found that the level of NRBF2 was increased after SAH and peaked at 24 h after SAH. In addition, we found that the overexpression of NRBF2 significantly improved neurobehavioral scores and reduced ERS, oxidative stress, and neuroinflammation in SAH, whereas the inhibition of NRBF2 exacerbated these phenotypes. In terms of mechanism, NRBF2 overexpression significantly promoted autophagosome maturation, with the downregulation of CHOP, Romo-1, TXNIP, NLRP3, TNF-α, and IL-1ß expression through interaction with Rab7. The protective effect of NRBF2 on ERS-associated neuroinflammation and oxidative stress after SAH was eliminated by treatment with CQ. Meanwhile, it was also reversed by intraperitoneal injection of CID. Moreover, the MIT domain of NRBF2 was identified as a critical binding site that interacts with Rab7 and thereby promotes autophagosome maturation. CONCLUSION: Our data provide evidence that the autophagy protein NRBF2 has a protective effect on endoplasmic reticulum stress-associated neuroinflammation and oxidative stress by promoting autophagosome maturation through interactions with Rab7 after SAH.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Estresse Oxidativo/fisiologia , Hemorragia Subaracnóidea/metabolismo , Transativadores/metabolismo , proteínas de unión al GTP Rab7/metabolismo , Animais , Autofagia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/prevenção & controle
4.
J Neuroinflammation ; 17(1): 165, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450897

RESUMO

BACKGROUND: Neuroinflammation is closely associated with the poor prognosis in subarachnoid hemorrhage (SAH) patients. This study was aimed to determine the role of stimulator of IFN genes (STING), an essential regulator to innate immunity, in the context of SAH. METHODS: A total of 344 male C57BL/6 J mice were subjected to endovascular perforation to develop a model of SAH. Selective STING antagonist C-176 and STING agonist CMA were administered at 30 min or 1 h post-modeling separately. To investigate the underlying mechanism, the AMPK inhibitor compound C was administered intracerebroventricularly at 30 min before surgery. Post-SAH assessments included SAH grade, neurological test, brain water content, western blotting, RT-PCR, and immunofluorescence. Oxygenated hemoglobin was introduced into BV2 cells to establish a SAH model in vitro. RESULTS: STING was mainly distributed in microglia, and microglial STING expression was significantly increased after SAH. Administration of C-176 substantially attenuated SAH-induced brain edema and neuronal injury. More importantly, C-176 significantly alleviated both short-term and persistent neurological dysfunction after SAH. Meanwhile, STING agonist CMA remarkably exacerbated neuronal injury and deteriorated neurological impairments. Mechanically, STING activation aggravated neuroinflammation via promoting microglial activation and polarizing into M1 phenotype, evidenced by microglial morphological changes, as well as the increased level of microglial M1 markers including IL-1ß, iNOS, IL-6, TNF-α, MCP-1, and NLRP3 inflammasome, while C-176 conferred a robust anti-inflammatory effect. However, all the mentioned beneficial effects of C-176 including alleviated neuroinflammation, attenuated neuronal injury and the improved neurological function were reversed by AMPK inhibitor compound C. Meanwhile, the critical role of AMPK signal in C-176 mediated anti-inflammatory effect was also confirmed in vitro. CONCLUSION: Microglial STING yielded neuroinflammation after SAH, while pharmacologic inhibition of STING could attenuate SAH-induced inflammatory injury at least partly by activating AMPK signal. These data supported the notion that STING might be a potential therapeutic target for SAH.


Assuntos
Inflamação/patologia , Proteínas de Membrana/metabolismo , Hemorragia Subaracnóidea/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/imunologia , Hemorragia Subaracnóidea/metabolismo
5.
Neurol Sci ; 40(5): 947-956, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30706241

RESUMO

OBJECTIVE: The purpose of this meta-analysis was to evaluate the diagnostic performance of diffusion-weighted imaging (DWI) for differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma (GBM). MATERIALS AND METHODS: A thorough search of the databases including PubMed, EMBASE, and Cochrane Library was carried out and the data acquired were up to November 1, 2017. The quality of the studies involved was evaluated using QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies, revised version). Multiple analytic values including sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the summary receiver operating characteristic (SROC) curve were calculated and pooled for the statistical analysis. The subgroup analysis was also performed to explore the heterogeneity. RESULTS: Eight retrospective studies (461 patients with 461 lesions) were included. The pooled SEN, SPE, PLR, NLR, and DOR with 95% confidence interval (CI) were 0.82 [95% CI 0.70-0.90], 0.84 [95% CI 0.75-0.90], 4.96 [95% CI 3.20-7.69], 0.22 [95% CI 0.13-0.37], and 22.85 [95% CI 10.42-50.11], respectively. The area under the curve (AUC) given by SROC curve was 0.90 [95% CI 0.87-0.92]. The subgroup analysis indicated the slice thickness of the images (> 3 mm versus ≤ 3 mm) was a significant factor affecting the heterogeneity. No existence of significant publication bias was confirmed with Deeks' test. CONCLUSIONS: DWI showed moderate diagnostic performance for differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma (GBM). Moreover, it is of clinical significance using DWI combined with conventional MRI to differentiate PCNSL from GBM.


Assuntos
Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Glioblastoma/diagnóstico por imagem , Linfoma/diagnóstico por imagem , Diagnóstico Diferencial , Humanos
6.
Fluids Barriers CNS ; 21(1): 37, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654318

RESUMO

BACKGROUND: Intraventricular hemorrhage (IVH) and associated hydrocephalus are significant complications of intracerebral and subarachnoid hemorrhage. Despite proximity to IVH, the immune cell response at the choroid plexus (ChP) has been relatively understudied. This study employs CX3CR-1GFP mice, which marks multiple immune cell populations, and immunohistochemistry to outline that response. METHODS: This study had four parts all examining male adult CX3CR-1GFP mice. Part 1 examined naïve mice. In part 2, mice received an injection 30 µl of autologous blood into right ventricle and were euthanized at 24 h. In part 3, mice underwent intraventricular injection of saline, iron or peroxiredoxin 2 (Prx-2) and were euthanized at 24 h. In part 4, mice received intraventricular iron injection and were treated with either control or clodronate liposomes and were euthanized at 24 h. All mice underwent magnetic resonance imaging to quantify ventricular volume. The ChP immune cell response was examined by combining analysis of GFP(+) immune cells and immunofluorescence staining. RESULTS: IVH and intraventricular iron or Prx-2 injection in CX3CR-1GFP mice all induced ventriculomegaly and activation of ChP immune cells. There were very marked increases in the numbers of ChP epiplexus macrophages, T lymphocytes and neutrophils. Co-injection of clodronate liposomes with iron reduced the ventriculomegaly which was associated with fewer epiplexus and stromal macrophages but not reduced T lymphocytes and neutrophils. CONCLUSION: There is a marked immune cell response at the ChP in IVH involving epiplexus cells, T lymphocytes and neutrophils. The blood components iron and Prx-2 may play a role in eliciting that response. Reduction of ChP macrophages with clodronate liposomes reduced iron-induced ventriculomegaly suggesting that ChP macrophages may be a promising therapeutic target for managing IVH-induced hydrocephalus.


Assuntos
Plexo Corióideo , Modelos Animais de Doenças , Hidrocefalia , Animais , Plexo Corióideo/imunologia , Hidrocefalia/etiologia , Hidrocefalia/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Hemorragia Cerebral Intraventricular/imunologia , Macrófagos/imunologia , Ferro/metabolismo
7.
Biomedicines ; 12(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38927458

RESUMO

Hematoma clearance is critical for mitigating intracerebral hemorrhage (ICH)-induced brain injury. Multinucleated giant cells (MGCs), a type of phagocyte, and the complement system may play a pivotal role in hematoma resolution, but whether the complement system regulates MGC formation after ICH remains unclear. The current study investigated the following: (1) the characteristics of MGC formation after ICH, (2) whether it was impacted by complement C3 deficiency in mice and (3) whether it also influenced hematoma degradation (hemosiderin formation). Young and aged male mice, young female mice and C3-deficient and -sufficient mice received a 30 µL injection of autologous whole blood into the right basal ganglia. Brain histology and immunohistochemistry were used to examine MGC formation on days 3 and 7. Hemosiderin deposition was examined by autofluorescence on day 28. Following ICH, MGCs were predominantly located in the peri-hematoma region exhibiting multiple nuclei and containing red blood cells or their metabolites. Aging was associated with a decrease in MGC formation after ICH, while sex showed no discernible effect. C3 deficiency reduced MGC formation and reduced hemosiderin formation. Peri-hematomal MGCs may play an important role in hematoma resolution. Understanding how aging and complement C3 impact MGCs may provide important insights into how to regulate hematoma resolution.

8.
Transl Stroke Res ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370487

RESUMO

Evidence indicates that the complement system is activated and plays a role in brain injury after intracerebral hemorrhage (ICH). Most studies have focused on the role of C3, C5 and the membrane attack complex. The purpose of this study was to investigate the potential impact of complement C1q, a key upstream component of the classical pathway, on ICH-induced brain injury. Wild-type (WT) and C1qa knock out (KO) mice were compared using an autologous blood injection ICH model. Magnetic resonance imaging (MRI) was performed on days 1, 3 and 7 and brains harvested on days 3 and 7 for immunohistochemistry to examine brain injury mechanisms. WT and C1qa KO mice also received an intracerebral injection of thrombin, a key factor in ICH-induced brain injury. Following MRI scans, brains were harvested for immunohistochemistry on day 1. In comparison to WT mice, C1qa KO mice had reduced hematoma erythrolysis and neutrophil infiltration after ICH. However, they also had delayed hematoma clearance, which was associated with reduced induction of phagocytic multinuclear giant cells, and increased perihematomal neuronal damage. After thrombin injection, C1qa KO mice had smaller lesion volumes, less neuronal loss, reduced neutrophil infiltration, and less BBB damage. C1qa knockout has beneficial and detrimental effects on ICH-induced brain injury mechanisms, but a consistent beneficial effect after thrombin injection. Strategies to balance the roles of C1q after ICH may represent a promising therapeutic direction.

9.
Stroke Vasc Neurol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485231

RESUMO

BACKGROUND: Astrocytes regulate blood-brain barrier (BBB) integrity, whereas subarachnoid haemorrhage (SAH) results in astrocyte dysregulation and BBB disruption. Here, we explored the involvement of tissue inhibitor of matrix metalloprotease-1 (TIMP1) in astrocyte-mediated BBB protection during SAH, along with its underlying mechanisms. METHODS: C57BL/6J mice were used to establish a model of SAH. The effects of TIMP1 on SAH outcomes were analysed by intraperitoneal injection of recombinant mouse TIMP1 protein (rm-TIMP1; 250 µg/kg). The roles of TIMP1 and its effector ß1-integrin on astrocytes were observed by in vivo transduction with astrocyte-targeted adeno-associated virus carrying TIMP1 overexpression plasmid or ß1-integrin RNAi. The molecular mechanisms underlying TIMP1 and ß1-integrin interactions were explored in primary cultured astrocytes stimulated with red blood cells (RBCs). RESULTS: TIMP1 was upregulated after SAH. Administration of rm-TIMP1 mitigated SAH-induced early brain injury (EBI) in male and female mice. TIMP1 was primarily expressed in astrocytes; its overexpression in astrocytes led to increased ß1-integrin expression in astrocytes, along with the preservation of astrocytic endfoot attachment to the endothelium and subsequent recovery of endothelial tight junctions. All of these effects were reversed by the knockdown of ß1-integrin in astrocytes. Molecular analysis showed that TIMP1 overexpression decreased the RBC-induced ubiquitination of ß1-integrin; this effect was partially achieved by inhibiting the interaction between ß1-integrin and the E3 ubiquitin ligase Trim21. CONCLUSION: TIMP1 inhibits the interaction between ß1-integrin and Trim21 in astrocytes, thereby rescuing the ubiquitination of astrocytic ß1-integrin. It subsequently restores interactions between astrocytic endfeet and the endothelium, as well as BBB integrity, eventually mitigating SAH-induced EBI.

10.
Theranostics ; 14(1): 283-303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164152

RESUMO

Rationale: Intracerebral hemorrhage (ICH) is a devastating cerebrovascular disease resulting from blood extravasating into the brain parenchyma. Escalation of erythrophagocytosis (a form of efferocytosis), avoiding the consequent release of the detrimental erythrocyte lysates, may be a promising target of ICH management. The ADAM17 inhibitor and liver X receptor (LXR) agonist could promote efficient efferocytosis and injury repair. Nevertheless, the poor bioavailability and restriction of the blood-brain barrier (BBB) hinder their application. Therefore, it is needed that biocompatible and smart nanoplatforms were designed and synthesized to realize effective therapy targeting erythrophagocytosis. Methods: We first assessed the synergistic effect of therapeutic GW280264X (an ADAM17 inhibitor) and desmosterol (an LXR agonist) on erythrophagocytosis in vitro. Then a pH-responsive neutrophil membrane-based nanoplatform (NPEOz) served as a carrier to accurately deliver therapeutic GW280264X and desmosterol to the damaged brain was prepared via co-extrusion. Afterwards, their pH-responsive performance was valued in vitro and targeting ability was assessed through fluorescence image in vivo. Finally, the pro-erythrophagocytic and anti-neuroinflammatory ability of the nanomedicine and related mechanisms were investigated. Results: After the synergistical effect of the above two drugs on erythrophagocytosis was confirmed, we successfully developed neutrophil-disguised pH-responsive nanoparticles to efficiently co-deliver them. The nanoparticles could responsively release therapeutic agents under acidic environments, and elicit favorable biocompatibility and ability of targeting injury sites. D&G@NPEOz nanoparticles enhanced erythrophagocytosis through inhibiting shedding of the efferocytotic receptors MERTK/AXL mediated by ADAM17 and accelerating ABCA-1/ABCG-1-mediated cholesterol efflux regulated by LXR respectively. In addition, the nano-formulation was able to modulate the inflammatory microenvironment by transforming efferocytes towards a therapeutic phenotype with reducing the release of proinflammatory cytokines while increasing the secretion of anti-inflammatory factors, and improve neurological function. Conclusions: This biomimetic nanomedicine is envisaged to offer an encouraging strategy to effectively promote hematoma and inflammation resolution, consequently alleviate ICH progression.


Assuntos
Nanopartículas , Neutrófilos , Camundongos , Animais , Humanos , Desmosterol , Camundongos Endogâmicos C57BL , Hemorragia Cerebral/tratamento farmacológico , Receptores X do Fígado , Concentração de Íons de Hidrogênio
11.
J Adv Res ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142439

RESUMO

INTRODUCTION: Intracerebral haemorrhage (ICH) is a devastating disease that leads to severe neurological deficits. Microglia are the first line of defence in the brain and play a crucial role in neurological recovery after ICH, whose activities are primarily driven by glucose metabolism. However, little is known regarding the status of glucose metabolism in microglia and its interactions with inflammatory responses after ICH. OBJECTIVES: This study investigated microglial glycolysis and its mechanistic effects on microglial inflammation after ICH. METHODS: We explored the status of glucose metabolism in the ipsilateral region and in fluorescence-activated-cell-sorting-isolated (FACS-isolated) microglia via 2-deoxy-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) analyses and gamma emission, respectively. Energy-related targeted metabolomics, along with 13C-glucose isotope tracing, was utilised to analyse glycolytic products in microglia. Mitochondrial membrane potential and mitochondrial reactive oxygen species (MitoROS) accumulation was assessed by flow cytometry. Behavioural, western blotting, gene regulation, and enzymatic activity analyses were conducted with a focus on microglia. RESULTS: Neurological dysfunction was strongly correlated with decreased FDG-PET signals in the perihaematomal region, where microglial uptake of FDG was reduced. The decreased quantity of glucose-6-phosphate (G-6-P) in microglia was attributed to the downregulation of glucose transporter 1 (GLUT1) and hexokinase 2 (HK2). Enhanced inflammatory responses were driven by HK2 suppression via decreased mitochondrial membrane potential, which could be rescued by MitoROS scavengers. HK inhibitors aggravated neurological injury by suppressing FDG uptake and enhancing microglial inflammation in ICH mice. CONCLUSION: These findings indicate an unexpected metabolic status in pro-inflammatory microglia after ICH, consisting of glycolysis impairment caused by the downregulation of GLUT1 and HK2. Additionally, HK2 suppression promotes inflammatory responses by disrupting mitochondrial function, providing insight into the mechanisms by which inflammation may be facilitated after ICH and indicating that metabolic enzymes as potential targets for ICH treatment.

12.
Aging (Albany NY) ; 15(7): 2705-2720, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37036515

RESUMO

BACKGROUND: Neuroinflammation is a frequent cause of brain damage after intracerebral hemorrhage (ICH). Gut microbiota are reported to regulate neuroinflammation. Berberine has been found to have anti-inflammatory actions, including in the central nervous system. However, it is not known whether berberine regulates neuroinflammation after ICH, nor is the relationship between the antineuroinflammatory actions of berberine and the gut microbiota after ICH understood. METHODS: ICH was induced in male mice by collagenase injection. Immunofluorescent staining and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to detect microglia/macrophage phenotypes. Immunofluorescent staining, ELISA, and FITC-dextran were conducted to determine gut function. 16S rRNA sequencing of the fecal material was conducted to determine alterations in the gut microbiota. Antibiotic cocktail treatment and fecal microbiota transplantation (FMT) were used to deplete or restore the gut microbiota, respectively. Cylinder, forelimb placement and wire hanging tests were conducted to evaluate neurobehavioral function. RESULTS: Berberine significantly reduced neuroinflammation and alleviated neurological dysfunction by preventing microglial/macrophage proinflammatory polarization in ICH mice. Berberine also enhanced the function of the intestinal barrier, as shown by reductions in the levels of lipopolysaccharide-binding protein. Neuroinflammation in ICH mice was markedly reduced after transplantation of microbiota from berberine-treated mice, similar to treatment with oral berberine. In addition, a reduction in the microbiota reversed the neuroprotective effect of berberine. CONCLUSIONS: Berberine is a potential treatment for ICH-induced neuroinflammation, and its effects are at least partially dependent on the gut microbiota.


Assuntos
Berberina , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Doenças Neuroinflamatórias , RNA Ribossômico 16S , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo
13.
J Adv Res ; 44: 185-199, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725189

RESUMO

INTRODUCTION: Microglia and macrophages participate in hematoma clearance after intracerebral hemorrhage (ICH), thereby facilitating tissue restoration and neurological recovery. Triggering receptor expressed on myeloid cells 2 (Trem2) has been indicated as a major pathology-induced immune signaling hub on the microglial/macrophage surface. Soluble Trem2 (sTrem2), the proteolytic form of Trem2, is abundant in the body fluid and is positively correlated with the pathological process. OBJECTIVES: In the present study, we aimed to investigate the potential role of sTrem2 in hematoma resolution after ICH and to elucidate its underlying mechanisms. METHODS: We explored the biological functions of sTrem2 in the murine ICH brain by stereotaxic injection of recombinant sTrem2 protein or by adeno-associated virus-mediated expression. Erythrocyte phagocytosis was assessed using flow cytometry and immunofluorescence. Western blotting was performed to evaluate protein expression. Changes in behavior, sTrem2-induced down-stream pathway, and microglia were examined. RESULTS: sTrem2 impedes hematoma resolution and impairs functional motor and sensory recovery. Interestingly, sTrem2 bypasses full-length Trem2, negatively regulating microglial/macrophage erythrophagocytosis, and promotes an inflammatory phenotype, which is associated with reduced retromer levels and impaired recycling of the pro-erythrophagocytic receptor CD36. Rescue of retromer Vps35 abolishes the phagocytosis-inhibiting effects and lysosome-dependent CD36 degradation caused by sTrem2. CONCLUSION: These findings indicate sTrem2 as a negative factor against microglia/macrophage-mediated hematoma and related neuronal damage clearance, provide insight into the mechanisms by which erythrophagocytosis is regulated and how it may be impaired after ICH, and suggest that the anti-proteolytic activity of Trem2 can be explored for ICH therapy.


Assuntos
Hemorragia Cerebral , Linfo-Histiocitose Hemofagocítica , Animais , Camundongos , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Fagocitose/fisiologia , Macrófagos/metabolismo , Microglia/metabolismo , Microglia/patologia , Hematoma/complicações , Hematoma/metabolismo , Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/metabolismo , Linfo-Histiocitose Hemofagocítica/patologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/farmacologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/farmacologia , Receptores Imunológicos/metabolismo
14.
Immunol Lett ; 264: 36-45, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940007

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a serious medical problem, and promising strategy is limited. Macrophage initiated brain inflammatory injury following ICH, but the molecular mechanism had not been well identified. E3 ligase Nedd4L is implicated in the pathogenesis of the inflammatory immune response. METHODS: In the present study, we detected the levels of Nedd4L in macrophages following ICH. Furthermore, Macrophage M1 polarization, pro-inflammatory cytokine production, BBB disruption, brain water content and neurological function were examined in ICH mice. RESULTS: Here, we demonstrated that E3 ligase Nedd4L levels of macrophage increased following ICH, promoted M1 polarization inflammation by TRAF3. Nedd4L promoted BBB disruption, as well as neurological deficits. Inhibition of Nedd4L significantly attenuated M1 polarization in vivo. Inhibition of Nedd4L decreased TRAF3 and TBK1 levels, and subsequent phosphorylation of p38 and NF-κB p65 subunit following ICH. CONCLUSIONS: Our data demonstrated that Nedd4L was involved in the pathogenesis of ICH, which promoted inflammatory responses and exacerbated brain damage by TRAF3 following ICH.


Assuntos
Encéfalo , Hemorragia Cerebral , Ubiquitina-Proteína Ligases Nedd4 , Fator 3 Associado a Receptor de TNF , Animais , Camundongos , Encéfalo/imunologia , Encéfalo/patologia , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/patologia , Macrófagos/enzimologia , Macrófagos/imunologia , Transdução de Sinais/fisiologia , Fator 3 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo
15.
Biosens Bioelectron ; 236: 115415, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245459

RESUMO

Cancer development is driven by diverse processes, and metabolic alterations are among the primary characteristics. Multiscale imaging of aberrant metabolites in cancer is critical to understand the pathology and identify new targets for treatment. While peroxynitrite (ONOO-) is reported being enriched in some tumors and plays important tumorigenic roles, whether it is upregulated in gliomas remains unexplored. To determine the levels and roles of ONOO- in gliomas, efficient tools especially those with desirable blood-brain barrier (BBB) permeability and can realize the in situ imaging of ONOO- in multiscale glioma-related samples are indispensable. Herein, we proposed a strategy of physicochemical property-guided probe design, which resulted in the development of a fluorogenic probe NOSTracker for smartly tracking ONOO-. The probe showed sufficient BBB permeability. ONOO- triggered oxidation of its arylboronate group was automatically followed by a self-immolative cleavage of a fluorescence-masking group, liberating its fluorescence signal. The probe was not only highly sensitive and selective towards ONOO-, but its fluorescence favored desirable stability in various complex biological milieus. Guaranteed by these properties, multiscale imaging of ONOO- was realized in vitro in patient-derived primary glioma cells, ex vivo in clinical glioma slices, and in vivo in the glioma of live mice. The results showed the upregulation of ONOO- in gliomas. Furthermore, a specific ONOO- scavenger uric acid (UA) was pharmaceutically used to downregulate ONOO- in glioma cell lines, and an anti-proliferative effect was observed. These results taken together imply the potential of ONOO- as a biomarker and target for glioma treatment, and propose NOSTracker as a reliable tool to further explore the role of ONOO- in glioma development.


Assuntos
Técnicas Biossensoriais , Glioma , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Ácido Peroxinitroso , Corantes Fluorescentes/química , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Biomarcadores , Imagem Óptica
16.
Stroke Vasc Neurol ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37793899

RESUMO

BACKGROUND: Ischaemic stroke triggers neuronal mitophagy, while the involvement of mitophagy receptors in ischaemia/reperfusion (I/R) injury-induced neuronal mitophagy remain not fully elucidated. Here, we aimed to investigate the involvement of mitophagy receptor FUN14 domain-containing 1 (FUNDC1) and its modulation in neuronal mitophagy induced by I/R injury. METHODS: Wild-type and FUNDC1 knockout mice were generated to establish models of neuronal I/R injury, including transient middle cerebral artery occlusion (tMCAO) in vivo and oxygen glucose deprivation/reperfusion in vitro. Stroke outcomes of mice with two genotypes were assessed. Neuronal mitophagy was analysed both in vivo and in vitro. Activities of FUNDC1 and its regulator Src were evaluated. The impact of Src on FUNDC1-mediated mitophagy was assessed through administration of Src antagonist PP1. RESULTS: To our surprise, FUNDC1 knockout mice subjected to tMCAO showed stroke outcomes comparable to those of their wild-type littermates. Although neuronal mitophagy could be activated by I/R injury, FUNDC1 deletion did not disrupt neuronal mitophagy. Transient activation of FUNDC1, represented by dephosphorylation of Tyr18, was detected in the early stages (within 3 hours) of neuronal I/R injury; however, phosphorylated Tyr18 reappeared and even surpassed baseline levels in later stages (after 6 hours), accompanied by a decrease in FUNDC1-light chain 3 interactions. Spontaneous inactivation of FUNDC1 was associated with Src activation, represented by phosphorylation of Tyr416, which changed in parallel with the level of phosphorylated FUNDC1 (Tyr18) during neuronal I/R injury. Finally, FUNDC1-mediated mitophagy in neurons under I/R conditions can be rescued by pharmacological inhibition of Src. CONCLUSIONS: FUNDC1 is inactivated by Src during the later stage (after 6 hours) of neuronal I/R injury, and rescue of FUNDC1-mediated mitophagy may serve as a potential therapeutic strategy for treating ischaemic stroke.

17.
Front Mol Neurosci ; 15: 860959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431804

RESUMO

Neurovascular units (NVUs) are basic functional units in the central nervous system and include neurons, astrocytes and vascular compartments. Ischemic stroke triggers not only neuronal damage, but also dissonance of intercellular crosstalk within the NVU. Stroke is sexually dimorphic, but the sex-associated differences involved in stroke-induced neurovascular dysfunction are studied in a limited extend. Preclinical studies have found that in rodent models of stroke, females have less neuronal loss, stronger repairing potential of astrocytes and more stable vascular conjunction; these properties are highly related to the cerebroprotective effects of female hormones. However, in humans, these research findings may be applicable only to premenopausal stroke patients. Women who have had a stroke usually have poorer outcomes compared to men, and because stoke is age-related, hormone replacement therapy for postmenopausal women may exacerbate stroke symptoms, which contradicts the findings of most preclinical studies. This stark contrast between clinical and laboratory findings suggests that understanding of neurovascular differences between the sexes is limited. Actually, apart from gonadal hormones, differences in neuroinflammation as well as genetics and epigenetics promote the sexual dimorphism of NVU functions. In this review, we summarize the confirmed sex-associated differences in NVUs during ischemic stroke and the possible contributing mechanisms. We also describe the gap between clinical and preclinical studies in terms of sexual dimorphism.

18.
Neurosci Lett ; 781: 136648, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35469820

RESUMO

Intracerebral hemorrhage is a type of acute cerebrovascular disease that remains one of the main causes of death and disability. After the onset of ICH, different types of severe pathophysiological changes can cause great damage to brain tissue, including neuroinflammation. Our study demonstrated the effect of PEA on modulating microglia phenotype and neuroinflammation, as well as the possible underlying mechanisms after ICH for the first time. The phenotypic transformation of microglia and simulation of neuroinflammation after ICH in vitro was induced by hemoglobin on BV2 cells. Additionally, the experiment in vivo model was induced by collagenase injection in mice. The role of PEA on hematoma clearance was also discussed. Western blot, ELISA and immunofluorescence staining were used to determine the phenotypic polarization of microglia and neuroinflammation. In order to evaluate the role of PPAR-α in the anti-inflammatory effect of PEA after ICH, the PPAR-α antagonist GW6471 was utilized. Behavior tests examined the effect of PEA on improving neuronal function. Our results showed that PEA can ameliorate neuroinflammation by inhibiting upregulation of NF-κB, IL-1ß and TNF-α, both in vivo and in vitro. Additionally, PEA can improve motor function in ICH mice and promotes hematoma clearance. At the same time, PEA can increase the levels of PPAR-α in the nucleus. Hence, PPAR-α antagonists can reverse the protective effects of PEA on neuroinflammation. These results suggest that PEA is involved in microglia polarization, attenuating the activation of neuroinflammation, as well as improving motor function after ICH. This, at least in part, may contribute to the involvement of PPAR-α modulation of NF-κB.


Assuntos
Etanolaminas , NF-kappa B , PPAR alfa , Ácidos Palmíticos , Amidas/farmacologia , Animais , Hemorragia Cerebral/tratamento farmacológico , Etanolaminas/farmacologia , Hematoma/tratamento farmacológico , Hematoma/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , PPAR alfa/metabolismo , Ácidos Palmíticos/farmacologia
19.
Front Neurol ; 13: 890126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651348

RESUMO

Objective: In moyamoya disease (MMD) with direct or combined revascularization, the initially hemodynamic recipient features are likely one of the main causes of acute hemodynamic disruption. Previous studies have explored the relationship between recipient diameter or flow velocity and postoperative complications, but there are still no optimal selection criteria with multiple potential recipient vessels. Cerebral edema is one of the most common radiological manifestations in the acute postoperative period. This study assessed the hemodynamic characteristics of cortex vessels related to postoperative cerebral edema. Methods: All patients who had undergone direct or combined revascularization with preoperative digital subtraction angiography (DSA) between 2019 and 2021 were eligible for inclusion in this study. The application of DSA was performed and regular radiological examinations were employed after surgery. DSA was analyzed with the hemodynamic features within chosen recipient vessels. Cerebral edema was identified as a low-density image on CT or high signaling in the MRI T2 phase. The recipient hemodynamic characteristics and demographic presentation, as well as clinical data, were retrospectively analyzed in this study. Results: A total of 103 patients underwent direct or combined revascularization with preoperative DSA. The mean age of this enrolled cohort was 44.31 ± 10.386 years, in which bilaterally involved MMD accounted for the main part. The preliminary correlation analysis found preoperative disease period (p = 0.078), recipients observed in angiography (p = 0.002), and surgery on the left (p = 0.097) may be associated with cerebral edema. The following regression analysis confirmed low occurrence of cerebral edema was accompanied by recipients observed in angiography (p = 0.003). After subdividing by flow direction and hemodynamic sources, the incidence rate of anterograde direction, anterior sources, and posterior sources were significantly lower than undetected recipients. Conclusions: Cerebral edema is a common radiological manifestation in MMDs after surgery. In this study, the observation in angiography reliably identifies a variety of physiological or pathological recipient detection, flow direction, and hemodynamic sources in patients with MMD after revascularization, which indicates the selection strategy of potential recipients and highlights the importance of recipient observability in DSA. Meanwhile, vascular conditions determined by recipient hemodynamics meditate the occurrence of postoperative cerebral edema.

20.
Front Immunol ; 13: 919444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189326

RESUMO

Aim: The complement cascade is activated and may play an important pathophysiologic role in brain injury after experimental intracerebral hemorrhage (ICH). However, the exact mechanism of specific complement components has not been well studied. This study determined the role of complement C1q/C3-CR3 signaling in brain injury after ICH in mice. The effect of minocycline on C1q/C3-CR3 signaling-induced brain damage was also examined. Methods: There were three parts to the study. First, the natural time course of C1q and CR3 expression was determined within 7 days after ICH. Second, mice had an ICH with CR3 agonists, LA-1 or vehicle. Behavioral score, neuronal cell death, hematoma volume, and oxidative stress response were assessed at 7 days after ICH. Third, the effect of minocycline on C1q/C3-CR3 signaling and brain damage was examined. Results: There were increased numbers of C1q-positive and CR3-positive cells after ICH. Almost all perihematomal C1q-positive and CR3-positive cells were microglia/macrophages. CR3 agonist LA-1 aggravated neurological dysfunction, neuronal cell death, and oxidative stress response on day 7 after ICH, as well as enhancing the expression of the CD163/HO-1 pathway and accelerating hematoma resolution. Minocycline treatment exerted neuroprotective effects on brain injury following ICH, partly due to the inhibition of C1q/C3-CR3 signaling, and that could be reversed by LA-1. Conclusions: The complement C1q/C3-CR3 signaling is upregulated after ICH. The activation of C1q/C3-CR3 signaling by LA-1 aggravates brain injury following ICH. The neuroprotection of minocycline, at least partly, is involved with the repression of the C1q/C3-CR3 signaling pathway.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Complemento C1q , Hematoma , Camundongos , Minociclina/farmacologia , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA