RESUMO
Airborne bacteria are an influential component of the Earth's microbiomes, but their community structure and biogeographic distribution patterns have yet to be understood. We analyzed the bacterial communities of 370 air particulate samples collected from 63 sites around the world and constructed an airborne bacterial reference catalog with more than 27 million nonredundant 16S ribosomal RNA (rRNA) gene sequences. We present their biogeographic pattern and decipher the interlacing of the microbiome co-occurrence network with surface environments of the Earth. While the total abundance of global airborne bacteria in the troposphere (1.72 × 1024 cells) is 1 to 3 orders of magnitude lower than that of other habitats, the number of bacterial taxa (i.e., richness) in the atmosphere (4.71 × 108 to 3.08 × 109) is comparable to that in the hydrosphere, and its maximum occurs in midlatitude regions, as is also observed in other ecosystems. The airborne bacterial community harbors a unique set of dominant taxa (24 species); however, its structure appears to be more easily perturbed, due to the more prominent role of stochastic processes in shaping community assembly. This is corroborated by the major contribution of surface microbiomes to airborne bacteria (averaging 46.3%), while atmospheric conditions such as meteorological factors and air quality also play a role. Particularly in urban areas, human impacts weaken the relative importance of plant sources of airborne bacteria and elevate the occurrence of potential pathogens from anthropogenic sources. These findings serve as a key reference for predicting planetary microbiome responses and the health impacts of inhalable microbiomes with future changes in the environment.
Assuntos
Microbiologia do Ar , Microbiota , Efeitos Antropogênicos , Bactérias/genética , Humanos , Microbiota/genética , RNA Ribossômico 16S/genéticaRESUMO
Photo-, microbial, and abiotic dark reduction of soil mercury (Hg) may all lead to elemental mercury (Hg(0)) emissions. Utilizing lab incubations, isotope signatures of Hg(0) emitted from mining soils were characterized to quantify the interplay and contributions of various Hg reduction pathways, which have been scarcely studied. At 15 °C, microbial reduced Hg(0) showed a negative mass-dependent fractionation (MDF) (δ202Hg = -0.30 ± 0.08, 1SD) and near-zero mass-independent fractionation (MIF) (Δ199Hg = 0.01 ± 0.04, 1SD), closely resembling dark reduced Hg(0) (δ202Hg = -0.18 ± 0.05, Δ199Hg = -0.01 ± 0.03, 1SD). In comparison, photoreduced Hg(0) exhibited significant MDF and MIF (δ202Hg = -0.55 ± 0.05, Δ199Hg = -0.20 ± 0.07, 1SD). In the dark, Hg isotopic signatures remained constant over the temperature range of 15-35 °C. Nonetheless, light exposure and temperature changes together altered Hg(0) MIF signatures significantly. Isotope mixing models along with Hg(0) emission flux data highlighted photo- and microbial reduction contributing 79-88 and 12-21%, respectively, of the total Hg(0) emissions from mining soils, with negligible abiotic dark reduction. Microorganisms are the key driver of soil Hg(0) emissions by first dissolving HgS and then promoting ionic Hg formation, followed by facilitating the photo- and microbial reduction of organically bound Hg. These insights deepen our understanding of the biogeochemical processes that influence Hg(0) releases from surface soils.
RESUMO
Gaseous elemental mercury [Hg(0)] emissions from soils constitute a large fraction of global total Hg(0) emissions. Existing studies do not distinguish biotic- and abiotic-mediated emissions and focus only on photoreduction mediated emissions, resulting in an underestimation of soil Hg(0) emissions into the atmosphere. In this study, directional mercury (Hg) reduction pathways in paddy soils were identified using Hg isotopes. Results showed significantly different isotopic compositions of Hg(0) between those produced from photoreduction (δ202Hg = -0.80 ± 0.67, Δ199Hg = -0.38 ± 0.18), microbial reduction (δ202Hg = -2.18 ± 0.25, Δ199Hg = 0.29 ± 0.38), and abiotic dark reduction (δ202Hg = -2.31 ± 0.25, Δ199Hg = 0.50 ± 0.22). Hg(0) exchange fluxes between the atmosphere and the paddy soils were dominated by emissions, with the average flux ranging from 2.2 ± 5.7 to 16.8 ± 21.7 ng m-2 h-1 during different sampling periods. Using an isotopic signature-based ternary mixing model, we revealed that photoreduction is the most important contributor to Hg(0) emissions from paddy soils. Albeit lower, microbial and abiotic dark reduction contributed up to 36 ± 22 and 25 ± 15%, respectively, to Hg(0) emissions on the 110th day. These novel findings can help improve future estimation of soil Hg(0) emissions from rice paddy ecosystems, which involve complex biotic-, abiotic-, and photoreduction processes.
Assuntos
Atmosfera , Ecossistema , Isótopos de Mercúrio , Mercúrio , Oryza , Solo , Oryza/química , Atmosfera/química , Solo/química , Monitoramento Ambiental , Poluentes Atmosféricos , Poluentes do SoloRESUMO
The re-emission and subsurface migration of legacy mercury (Hg) are not well understood due to limited knowledge of the driving processes. To investigate these processes at a decommissioned chlor-alkali plant, we used mercury stable isotopes and chemical speciation analysis. The isotopic composition of volatilized Hg(0) was lighter compared to the bulk total Hg (THg) pool in salt-sludge and adjacent surface soil with mean ε202HgHg(0)-THg values of -3.29 and -2.35, respectively. Hg(0) exhibited dichotomous directions (E199HgHg(0)-THg = 0.17 and -0.16) of mass-independent fractionation (MIF) depending on the substrate from which it was emitted. We suggest that the positive MIF enrichment during Hg(0) re-emission from salt-sludge was overall controlled by the photoreduction of Hg(II) primarily ligated by Cl- and/or the evaporation of liquid Hg(0). In contrast, O-bonded Hg(II) species were more important in the adjacent surface soils. The migration of Hg from salt-sludge to subsurface soil associated with selective Hg(II) partitioning and speciation transformation resulted in deep soils depleted in heavy isotopes (δ202Hg = -2.5) and slightly enriched in odd isotopes (Δ199Hg = 0.1). When tracing sources using Hg isotopes, it is important to exercise caution, particularly when dealing with mobilized Hg, as this fraction represents only a small portion of the sources.
Assuntos
Mercúrio , Mercúrio/análise , Esgotos/análise , Isótopos de Mercúrio/análise , Isótopos/análise , Solo/química , Fracionamento Químico , Monitoramento AmbientalRESUMO
Measuring the isotopic composition of Hg in natural waters is challenging due to the ultratrace level of aqueous Hg (ng L-1). At least 5 ng of Hg mass is required for Hg isotopic analysis. Given the low Hg concentration in natural waters, a large volume of water (>10 L) is typically needed. The conventional grab sampling method is time-consuming, laborious, and prone to contamination during transportation and preconcentration steps. In this study, a DGT (diffusive gradients in thin films) method based on aminopropyl and mercaptopropyl bi-functionalized SBA-15 nanoparticles was developed and extended to determine the concentration and isotopic composition of aqueous Hg for the first time. The results of laboratory analysis showed that Hg adsorption by DGT induces â¼ -0.2 mass-dependent fractionation (MDF) and little mass-independent fractionation (MIF). The magnitude of MDF exhibits a dependence on the diffusion-layer thickness of DGT. Since Hg-MDF can occur in a broad range of environmental processes, monitoring the δ202Hg of aqueous Hg using the DGT method should be performed with caution. Field results show consistent MIF signatures (Δ199Hg) between the DGT and conventional grab sampling method. The developed DGT method serves as a passive sampling method that effectively characterizes the MIF of Hg in waters to understand the biogeochemical cycle of Hg at contaminated sites.
RESUMO
To understand the role of vegetation and soil in regulating atmospheric Hg0, exchange fluxes and isotope signatures of Hg were characterized using a dynamic flux bag/chamber at the atmosphere-foliage/soil interfaces at the Davos-Seehornwald forest, Switzerland. The foliage was a net Hg0 sink and took up preferentially the light Hg isotopes, consequently resulting in large shifts (-3.27) in δ202Hg values. The soil served mostly as net sources of atmospheric Hg0 with higher Hg0 emission from the moss-covered soils than from bare soils. The negative shift of δ202Hg and Δ199Hg values of the efflux air relative to ambient air and the Δ199Hg/Δ201Hg ratio among ambient air, efflux air, and soil pore gas highlight that Hg0 re-emission was strongly constrained by soil pore gas evasion together with microbial reduction. The isotopic mass balance model indicates 8.4 times higher Hg0 emission caused by pore gas evasion than surface soil photoreduction. Deposition of atmospheric Hg0 to soil was noticeably 3.2 times higher than that to foliage, reflecting the high significance of the soil to influence atmospheric Hg0 isotope signatures. This study improves our understanding of Hg atmosphere-foliage/soil exchange in subalpine coniferous forests, which is indispensable in the model assessment of forest Hg biogeochemical cycling.
Assuntos
Mercúrio , Mercúrio/análise , Solo/química , Suíça , Florestas , Atmosfera/química , Isótopos , Monitoramento Ambiental/métodos , Isótopos de Mercúrio/análiseRESUMO
In this study, exchange fluxes and Hg isotope fractionation during water-atmosphere Hg(0) exchange were investigated at three lakes in China. Water-atmosphere exchange was overall characterized by net Hg(0) emissions, with lake-specific mean exchange fluxes ranging from 0.9 to 1.8 ng m-2 h-1, which produced negative δ202Hg (mean: -1.61 to -0.03) and Δ199Hg (-0.34 to -0.16) values. Emission-controlled experiments conducted using Hg-free air over the water surface at Hongfeng lake (HFL) showed negative δ202Hg and Δ199Hg in Hg(0) emitted from water, and similar values were observed between daytime (mean δ202Hg: -0.95, Δ199Hg: -0.25) and nighttime (δ202Hg: -1.00, Δ199Hg: -0.26). Results of the Hg isotope suggest that Hg(0) emission from water is mainly controlled by photochemical Hg(0) production in water. Deposition-controlled experiments at HFL showed that heavier Hg(0) isotopes (mean ε202Hg: -0.38) preferentially deposited to water, likely indicating an important role of aqueous Hg(0) oxidation played during the deposition process. A Δ200Hg mixing model showed that lake-specific mean emission fluxes from water surfaces were 2.1-4.1 ng m-2 h-1 and deposition fluxes to water surfaces were 1.2-2.3 ng m-2 h-1 at the three lakes. Results from the this study indicate that atmospheric Hg(0) deposition to water surfaces indeed plays an important role in Hg cycling between atmosphere and water bodies.
Assuntos
Mercúrio , Água , Isótopos de Mercúrio , Mercúrio/análise , Isótopos , Atmosfera/química , Monitoramento AmbientalRESUMO
Atmosphere-surface exchange of elemental mercury (Hg(0)) is a vital component in global Hg cycling; however, Hg isotope fractionation remains largely unknown. Here, we report Hg isotope fractionation during air-surface exchange from terrestrial surfaces at sites of background (two) and urban (two) character and at five sites contaminated by Hg mining. Atmospheric Hg(0) deposition to soils followed kinetic isotope fractionation with a mass-dependent (MDF) enrichment factor of -4.32, and negligible mass-independent fractionation (MIF). Net Hg(0) emission generated average MDF enrichment factors (ε202Hg) of -0.91, -0.59, 1.64, and -0.42 and average MIF enrichment factors (E199Hg) of 0.07, -0.20, -0.14, and 0.21 for urban, background, and Hg mining soils and cinnabar tailing, respectively. Positive correlations between ε202Hg and ambient Hg(0) concentration indicate that the co-occurring Hg(0) deposition (accounting for 10-39%) in a regime of net soil emission grows with ambient Hg(0). The MIF of Hg(0) emission from soils (E199Hg range -0.27 to 0.14, n = 8) appears to be overall controlled by the photochemical reduction of kinetically constrained Hg(II) bonded to O ligands in background soils, while S ligands may have been more important in Hg mining area soils. In contrast, the small positive MIF of Hg(0) emission from cinnabar ore tailing (mean E199Hg = 0.21) was likely controlled by abiotic nonphotochemical reduction and liquid Hg(0) evaporation. This research provides critical observational constraints on understanding the Hg(0) isotope signatures released from and deposited to terrestrial surfaces and highlight stable Hg isotopes as a powerful tool for resolving atmosphere-surface exchange processes.
Assuntos
Mercúrio , Atmosfera , Fracionamento Químico , Monitoramento Ambiental , Mercúrio/análise , Isótopos de Mercúrio/análise , MineraçãoRESUMO
This study examined the isotopic composition of particulate bound mercury (PBM) in 10 Chinese megacities and explored the associated sources and transformation mechanisms. PBM in these cities was characterized by negative δ202Hg (mean: -2.00 to -0.78), slightly negative to highly positive Δ199Hg (mean: -0.04 to 0.47), and slightly positive Δ200Hg (mean: 0.02 to 0.06) values. The positive PBM Δ199Hg signatures were likely caused by physiochemical reactions in aerosols. The Δ199Hg/Δ201Hg ratio varied from 0.94 to 1.39 in the cities and increased with the increase in the corresponding mean Δ199HgPBM value. We speculate that, in addition to the photoreduction of oxidized Hg, other transformation mechanisms in aerosols (e.g., isotope exchange, complexation, and oxidation, which express nuclear volume effects) also shape the Δ199HgPBM signatures in the present study. These processes are likely enhanced in the presence of strong gas-particle partitioning of gaseous oxidized Hg (GOM) and elevated levels of redox active metals (e.g., Fe), halides, and elemental carbon. Based on Δ200HgPBM data presented in this and previous studies, we estimate that large proportions (â¼47 ± 22%) of PBM were sourced from the oxidation of gaseous elemental Hg followed by the partitioning of GOM onto aerosols globally, indicating the transformation of Hg(0) to PBM as an important sink of atmospheric Hg(0).
Assuntos
Mercúrio , Poeira , Monitoramento Ambiental , Gases , Isótopos , Mercúrio/análise , Isótopos de Mercúrio/análiseRESUMO
The transformation of mercury (Hg) in the environment plays a vital role in the cycling of Hg and its risk to the ecosystem and human health. Of particular importance are Hg oxidation/reduction and methylation/demethylation processes driven or mediated by the dynamics of light, microorganisms, and organic carbon, among others. Advances in understanding those Hg transformation processes determine our capacity of projecting and mitigating Hg risk. Here, we provide a critical analysis of major knowledge gaps in our understanding of Hg transformation in nature, with perspectives on approaches moving forward. Our analysis focuses on Hg transformation processes in the environment, as well as emerging methodology in exploring these processes. Future avenues for improving the understanding of Hg transformation processes to protect ecosystem and human health are also explored.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Ecossistema , Humanos , MetilaçãoRESUMO
Mass-independent fractionation (MIF) of stable even mass number mercury (Hg) isotopes is observed in rainfall and gaseous elemental Hg0 globally and is used to quantify atmospheric Hg deposition pathways. The chemical reaction and underlying even-Hg MIF mechanism are unknown however and speculated to be caused by Hg photo-oxidation on aerosols at the tropopause. Here, we investigate the Hg isotope composition of free tropospheric Hg0 and oxidized HgII forms at the high-altitude Pic du Midi Observatory. We find that gaseous oxidized Hg has positive Δ199Hg, Δ201Hg, and Δ200Hg and negative Δ204Hg signatures, similar to rainfall Hg, and we document rainfall Hg Δ196Hg to be near zero. Cloud water and rainfall Hg show an enhanced odd-Hg MIF of 0.3 compared to gaseous oxidized HgII, potentially indicating the occurrence of in-cloud aqueous HgII photoreduction. Diurnal MIF observations of free tropospheric Hg0 show how net Hg0 oxidation in high-altitude air masses leads to opposite even- and odd-MIF in Hg0 and oxidized HgII. We speculate that even-Hg MIF takes place by a molecular magnetic isotope effect during HgII photoreduction on aerosols that involves magnetic halogen nuclei. A Δ200Hg mass balance suggests that global Hg deposition pathways in models are likely biased toward HgII deposition. We propose that Hg cycling models could accommodate the Hg-isotope constraints on emission and deposition fluxes.
Assuntos
Mercúrio , Fracionamento Químico , Monitoramento Ambiental , Isótopos , Mercúrio/análise , Isótopos de Mercúrio/análise , OxirreduçãoRESUMO
Bioaccumulation of methylmercury (MeHg) in rice grains has been an emerging issue of human health, but the mechanism of bioaccumulation is still poorly understood. Mercury (Hg) isotope measurements are powerful tools for tracing the sources and biogeochemical cycles of Hg in the environment. In this study, MeHg compound-specific stable isotope analysis (CSIA) was developed in paddy soil and rice plants to trace the biogeochemical cycle of Hg in a paddy ecosystem during the whole rice-growing season. Isotopic fractionation was analyzed separately for MeHg and inorganic Hg (IHg). Results showed distinct isotopic signals between MeHg and IHg in rice plants, indicating different sources. δ202Hg values of MeHg showed no significant differences between roots, stalks, leaves, and grains at each growth stage. The similar Δ199Hg values of MeHg between rice tissues (0.14 ± 0.08, 2SD, n = 12), soil (0.13 ± 0.03, 2SD, n = 4), and irrigation water (0.17 ± 0.09, 2SD, n = 5) suggested that the soil-water system was the original source of MeHg in rice plants. Δ199Hg values of IHg in the paddy ecosystem indicated that water, soil, and atmosphere contributed to IHg in grains, leaves, stalks, and roots with varying degree. This study demonstrates that successful application of MeHg CSIA can improve our understanding of the sources and bioaccumulation mechanisms of MeHg and IHg in the paddy ecosystems.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Ecossistema , Monitoramento Ambiental , Humanos , Mercúrio/análise , Solo , Poluentes do Solo/análiseRESUMO
Mercury (Hg) deposition through litterfall has been regarded as the main input of gaseous elemental mercury (Hg0) into forest ecosystems. We hypothesize that earlier studies largely underestimated this sink because the contribution of Hg0 uptake by moss and the downward transport to wood and throughfall is overlooked. To test the hypothesis, we investigated the Hg fluxes contributed via litterfall and throughfall, Hg pool sizes in moss covers and woody biomass as well as their isotopic signatures in a glacier-to-forest succession ecosystem of the Southeast Tibetan Plateau. Results show that Hg0 depositional uptake and pool sizes stored in moss and woody biomass increase rapidly with the time after glacier retreat. Using the flux data as input to a Hg isotopic mixing model, Hg deposition through litterfall accounts for 27-85% of the total accumulation rate of Hg0 in organic soils of glacial retreat over 20-90 years, revealing the presence of additional sources of Hg0 input. Atmospheric Hg0 accounts for 76 ± 24% in ground moss, 86 ± 15% in tree moss, 62-92% in above ground woody biomass (branch-bark-stem), and 44-83% in roots. The downward decreasing gradient of atmospheric Hg0 fractions from the above ground woody biomass to roots suggests a foliage-to-root Hg transport in vegetation after uptake. Additionally, 34-82% of atmospheric Hg0 in throughfall further amplifies the accumulation of Hg0 from atmospheric sources. We conclude that woody biomass, moss, and throughfall represent important Hg0 sinks in forest ecosystems. These previously unaccounted for sink terms significantly increase the previously estimated atmospheric Hg0 sink via litterfall.
Assuntos
Mercúrio , Ecossistema , Monitoramento Ambiental , Florestas , Mercúrio/análise , ÁrvoresRESUMO
Isotopic composition of atmospheric particulate bound mercury (PBM) was obtained at four remote sites in different geographical regions of China for three to 12 month periods. Mean (±1σ) Δ199HgPBM was the highest at the site in southwestern China (0.66 ± 0.32), followed by the site in northeastern China (0.36 ± 0.34), the site in the marine boundary layer of East China Sea (0.35 ± 0.33), and was the lowest at the site in northwestern China (0.27 ± 0.22). Δ199HgPBM was relatively higher in cold than warm season at the sites in northwestern and southwestern China, whereas the opposite was found at the site in northeastern China. We propose that the seasonal variations of Δ199HgPBM were influenced by the exposure of air masses to regional (e.g., anthropogenic and dust related) and long-range (e.g., anthropogenic and oceanic) sources in the preceding several days, with the former characterized by lower Δ199HgPBM and the latter characterized by more positive Δ199HgPBM due to sufficient atmospheric transformations. Modeling results from Potential Source Contribution Function suggested that domestic anthropogenic emission was the major contributor to PBM pollution at the sites in northeastern and eastern China, whereas long-range transboundary transport of PBM from South Asia played a more important role at the sites in southwestern and northwestern China.
Assuntos
Poluentes Atmosféricos , Mercúrio , Ásia , China , Poeira , Monitoramento Ambiental , Isótopos de Mercúrio , Oceanos e MaresRESUMO
In this study, isotopic compositions of atmospheric total gaseous mercury (TGM) were measured in the Mt. Changbai (MCB) temperate deciduous forest and the Mt. Ailao (MAL) subtropical evergreen forest over a 1-year period. Higher δ202HgTGM values were observed under the forest canopy than above the forest canopy in the MCB forest. The vertical gradients in δ202HgTGM and Δ199HgTGM are positively correlated with the satellite-based normalized difference vegetation index (NDVI, representing the vegetation photosynthetic activity), suggesting that a strong vegetation activity (high NDVI) induces both mass-dependent and mass-independent fractionation of TGM isotopes. The observed δ202HgTGM and Δ199HgTGM showed seasonal variations. Mean δ202HgTGM and Δ199HgTGM in summer were 0.35-0.99 and 0.06-0.09 higher than those in other seasons in the MCB forest. In contrast, the highest seasonal δ202HgTGM in the MAL forest was observed in winter at 0.07-0.40 higher than the values found in other seasons. The variability of δ202HgTGM and Δ199HgTGM in MCB was attributed to vegetation activities, whereas the seasonal δ202HgTGM in the MAL forest was driven by the exposure of air masses to anthropogenic emissions. Using the data in this study and in the literature, we concluded that vegetation activity and anthropogenic Hg release are the main drivers for the spatial variations in TGM isotopic compositions in the northern hemisphere.
Assuntos
Mercúrio , China , Monitoramento Ambiental , Florestas , Gases , Estações do AnoRESUMO
A novel passive exchange meter (EM) device was developed to assess air-surface exchange and leaching of Hg in a forest floor. Flux measurements were carried out in a subtropical forest ecosystem during a full year. Over 40% of the Hg fixed in fresh forest litter was remobilized in less than 60 days in warm and humid conditions as a response to rapid turnover of labile organic matter (OM). A two-block experiment including understory and clearing showed that losses of Hg covaried with seasonal conditions and was significantly affected by forest coverage. The process controlling the bulk loss of total Hg from the litter was volatilization, which typically represented 76-96% of the loss processes (Floss). The Floss ranges were 520-1370 and 165-942 ng m-2 d-1 in the understory and clearing, respectively. On a yearly basis, deposition of airborne Hg exceeded total losses by a factor of 2.5 in the clearing and 1.5 in the understory. The vegetation litter in this subtropical forest therefore represented a net sink of atmospheric Hg. This study provided a novel approach to Hg air-soil exchange measurements and further insights on the link between Hg remobilization and OM turnover along with its environmental drivers.
Assuntos
Mercúrio , Poluentes do Solo , Ecossistema , Monitoramento Ambiental , Florestas , Solo , ÁrvoresRESUMO
China took aggressive air pollution control measures from 2013 to 2017, leading to the mitigation of atmospheric mercury pollution as a cobenefit. This study is the first to systematically evaluate the effect of five major air pollution control measures in reducing mercury emissions, the total gaseous mercury (TGM) concentration and mercury deposition flux (FLX) for unit emissions reduction. From 2013 to 2017, China's mercury emissions decreased from 571 to 444 tons, resulting in a 0.29 ng m-3 decrease in the TGM concentration, on average, and in a 17 µg m-2 yr-1 decrease in FLX. Ultralow emission renovations of coal-fired power plants are identified as the most effective emission abatement measure. As a result of this successful measure, coal-fired power plants are no longer the main mercury emitters. In 2017, the cement clinker sector became the largest emitter due to the use of less effective mercury removal measures. However, in terms of the mitigated TGM concentration and FLX levels per unit emission abatement, newly built wet flue gas desulfurization (WFGD) systems in coal-fired industrial boilers have become particularly effective in decreasing FLX levels. Therefore, to effectively reduce atmospheric mercury pollution in China, prioritizing mercury emissions control of cement clinkers and coal-fired industrial boilers is recommended.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mercúrio , China , Carvão Mineral , Centrais ElétricasRESUMO
Atmospheric particulate-bound mercury (PBM) plays an important role in the geochemical cycling of mercury (Hg). This study reviewed research progress of the PBM, including the possible emission and deposition pathways, measurement methods and the global distribution. The primary PBM sources are anthropogenic sources, but natural sources could be also a considerable contributor, for instance, chemical transport and dust in the arid and desert area. Different filter methods, such as quartz fibre filters, have been applied to the PBM measurement, and PBM can also be real-time monitored automatically. Generally, the average PBM concentrations were higher in the Northern Hemisphere than in the Southern Hemisphere. However, the PBM level of Antarctica is quite high. PBM concentrations were higher in the urban areas than in the remote areas, and there was a high PBM level in the developing countries. Moreover, high PBM concentrations were observed in the range 20°-60° of northern latitude.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Mercúrio/análise , Poeira/análiseRESUMO
The original version of this article unfortunately contained a mistake in units.
RESUMO
Gaseous elemental mercury (GEM, Hg) emissions are transformed to divalent reactive Hg (RM) forms throughout the troposphere and stratosphere. RM is often operationally quantified as the sum of particle bound Hg (PBM) and gaseous oxidized Hg (GOM). The measurement of GOM and PBM is challenging and under mounting criticism. Here we intercompare six months of automated GOM and PBM measurements using a Tekran (TK) KCl-coated denuder and quartz regenerable particulate filter method (GOMTK, PBMTK, and RMTK) with RMCEM collected on cation exchange membranes (CEMs) at the high altitude Pic du Midi Observatory. We find that RMTK is systematically lower by a factor of 1.3 than RMCEM. We observe a significant relationship between GOMTK (but not PBMTK) and Tekran flushTK blanks suggesting significant loss (36%) of labile GOMTK from the denuder or inlet. Adding the flushTK blank to RMTK results in good agreement with RMCEM (slope = 1.01, r2 = 0.90) suggesting we can correct bias in RMTK and GOMTK. We provide a bias corrected (*) Pic du Midi data set for 2012-2014 that shows GOM* and RM* levels in dry free tropospheric air of 198 ± 57 and 229 ± 58 pg m-3 which agree well with in-flight observed RM and with model based GOM and RM estimates.