Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Cell Biochem Funct ; 42(5): e4083, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38938150

RESUMO

Multidrug resistance (MDR) during clinical chemotherapy for cancer has been considered a major obstacle to treatment efficacy. The involvement of adenosine triphosphate-binding cassette (ABC) transporters in the MDR mechanism significantly reduces the efficacy of chemotherapeutics. This study investigates the potential of morin, a dietary bioflavonoid, to overcome colchicine resistance in KBChR-8-5 MDR cells. The P-gp inhibitory activity by morin was measured by calcein-AM drug efflux assay. Western blot analysis was employed to evaluate P-gp messenger RNA and protein expressions following morin treatment. Flow cytometry analysis and acridine orange/ethidium bromide fluorescence staining were utilised to investigate the induction of apoptosis and cell cycle arrest upon treatment with morin and paclitaxel in combination. Additionally, polymerase chain reaction (PCR) array analysis was conducted to study the gene expression profiles related to MDR, apoptosis and cell cycle arrest during treatment with morin, paclitaxel or their combination. Morin exhibited a strong binding interaction with human P-gp. This was corroborated by drug efflux assays, which showed a reduction in P-gp efflux function with increasing morin concentration. Furthermore, morin and paclitaxel combination potentiated the induction of apoptosis and G2/M phase cell cycle arrest. Morin treatment significantly downregulated the gene expression of ABCB1 and P-gp membrane expressions in MDR cells. Additionally, PCR array gene expression analysis revealed that the combination treatment with morin and paclitaxel upregulated proapoptotic and cell cycle arrest genes while downregulating ABCB1 gene and antiapoptotic genes. Thus, morin effectively reversed paclitaxel resistance in KBChR-8-5 drug-resistant cancer cells and concluded that morin resensitized the paclitaxel resistance in KBChR8-5 drug-resistant cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Apoptose , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Flavonoides , Paclitaxel , Humanos , Flavonoides/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Paclitaxel/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/química , Flavonas
2.
Small ; 19(43): e2302925, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37356070

RESUMO

Non-precious-metal based electrocatalysts with highly-exposed and well-dispersed active sites are crucially needed to achieve superior electrocatalytic performance for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) toward zinc-air battery (ZAB). Herein, Co-CoO heterostructures derived from nanosized ZIF-67 are densely-exposed and strongly-immobilized onto N-doped porous carbon foam (NPCF) through a self-sacrificial pyrolysis strategy. Benefited from the high exposure of Co-CoO heterostructures and the favorable mass and electron transfer ability of NPCF, the Co-CoO/NPCF electrocatalyst exhibits remarkable performance for both ORR (E1/2  = 0.843 V vs RHE) and OER (Ej = 10 mA cm-2  = 1.586 V vs RHE). Further application of Co-CoO/NPCF as the air-cathode in rechargeable ZAB achieves superior performance for liquid-state ZAB (214.1 mW cm-2 and 600 cycles) and flexible all-solid-state ZAB (93.1 mW cm-2 and 140 cycles). Results from DFT calculations demonstrate that the electronic metal-support interactions between Co-CoO and NPCF via abundant C-Nx sites is favorable for electronic structure modulation, accounting for the remarkable performance.

3.
Small ; 19(20): e2207569, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828798

RESUMO

High stability and efficiency of electrocatalysts are crucial for hydrogen evolution reaction (HER) toward water splitting in an alkaline media. Herein, a novel nano-Pt/Nb-doped Co(OH)2 (Pt/NbCo(OH)2 ) nanosheet is designed and synthesized using water-bath treatment and solvothermal reduction approaches. With nano-Pt uniformly anchored onto NbCo(OH)2 nanosheet, the synthesized Pt/NbCo(OH)2 shows outstanding electrocatalytic performances for alkaline HER, achieving a high stability for at least 33 h, a high mass activity of 0.65 mA µg-1 Pt, and a good catalytic activity with a low overpotential of 112 mV at 10 mA cm-2 . Both experimental and theoretical results prove that Nb-doping significantly optimizes the hydrogen adsorption free energy to accelerate the Heyrovsky step for HER, and boosts the adsorption of H2 O, which further enhances the water activation. This study provides a new design methodology for the Nb-doped electrocatalysts in an alkaline HER field by facile and green way.

4.
Small ; 19(35): e2300390, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37118859

RESUMO

Extracellular vesicles (EVs) are secreted nanostructures that play various roles in critical cancer processes. They operate as an intercellular communication system, transferring complex sets of biomolecules from cell to cell. The concentration of EVs is difficult to decipher, and there is an unmet technological need for improved (faster, simpler, and gentler) approaches to isolate EVs from complex matrices. Herein, an acoustofluidic concentration of extracellular vesicles (ACEV) is presented, based on a thin-film printed circuit board with interdigital electrodes mounted on a piezoelectric substrate. An angle of 120° is identified between the electrodes and the reference flat of the piezoelectric substrate for simultaneous generation of Rayleigh and shear horizontal waves. The dual waves create a complex acoustic field in a droplet, resulting in effective concentration of nanoparticles and EVs. The ACEV is able to concentrate 20 nm nanospheres within 105 s and four EV dilutions derived from the human prostate cancer (Du145) cell line in approximately 30 s. Cryo-electron microscopy confirmed the preservation of EV integrity. The ACEV device holds great potential to revolutionize investigations of EVs. Its faster, simpler, and gentler approach to EV isolation and concentration can save time and effort in phenotypic and functional studies of EVs.


Assuntos
Vesículas Extracelulares , Nanosferas , Neoplasias da Próstata , Masculino , Humanos , Microscopia Crioeletrônica , Vesículas Extracelulares/metabolismo , Linhagem Celular
5.
Langmuir ; 39(16): 5793-5802, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37041655

RESUMO

Droplet impact behavior on a solid surface is critical for many industrial applications such as spray coating, food production, printing, and agriculture. For all of these applications, a common challenge is to modify and control the impact regime and contact time of the droplets. This challenge becomes more critical for non-Newtonian liquids with complex rheology. In this research, we explored the impact dynamics of non-Newtonian liquids (by adding different concentrations of Xanthan into water) on superhydrophobic surfaces. Our experimental results show that by increasing the Xanthan concentration in water, the shapes of the bouncing droplet are dramatically altered, e.g., its shape at the separation moment is changed from a conventional vertical jetting into a "mushroom"-like one. As a result, the contact time of the non-Newtonian droplet could be reduced by up to ∼50%. We compare the impact scenarios of Xanthan liquids with those of glycerol solutions having a similar apparent viscosity, and results show that the differences in the elongation viscosity induce different impact dynamics of the droplets. Finally, we show that by increasing the Weber number for all of the liquids, the contact time is reduced, and the maximum spreading radius is increased.

6.
Small ; 18(17): e2200249, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35318800

RESUMO

For achieving high-resolution nanostructures for next-generation diffractive optical elements (DOEs) using an environmentally friendly process, an electrochemical development strategy is proposed and developed using AgInSbTe-based laser heat-mode resist (AIST-LHR). Based on the electrical resistivity difference of amorphous and crystalline phases for this resist, an etching selectivity ratio of ≈30:1 (i.e., the etch ratio between the amorphous and crystalline ones) is achieved through the oxidation of Fe3+ ions with the assisted pitting activation etching using Cl- ions in an acid medium. Nanostructures with a minimum feature size down to 41 nm are successfully generated, including grating patterns, meta-surface optical structures, gears, and English characters. Using a post-plasma etching process, the nanostructures are successfully transferred from the AIST-HLR onto silica substrate, and X-ray grating patterns with a line space of 80 nm are created as a demonstration for its potential applications in DOEs.

7.
Langmuir ; 38(37): 11314-11323, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070605

RESUMO

Ice accretion on economically valuable and strategically important surfaces poses significant challenges. Current anti-/de-icing techniques often have critical issues regarding their efficiency, convenience, long-term stability, or sustainability. As an emerging ice mitigation strategy, the thin-film surface acoustic wave (SAW) has great potentials due to its high energy efficiency and effective integration on structural surfaces. However, anti-/de-icing processes activated by SAWs involve complex interfacial evolution and phase changes, and it is crucial to understand the nature of dynamic solid-liquid-vapor phase changes and ice nucleation, growth, and melting events under SAW agitation. In this study, we systematically investigated the accretion and removal of porous rime ice from structural surfaces activated by SAWs. We found that icing and de-icing processes are strongly linked with the dynamical interfacial phase and structure changes of rime ice under SAW activation and the acousto-thermally induced localized heating that facilitate the melting of ice crystals. Subsequently, interactions of SAWs with the formed thin water layer at the ice/structure interface result in significant streaming effects that lead to further damage and melting of ice, liquid pumping, jetting, or nebulization.

8.
Soft Matter ; 18(6): 1302-1309, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35050295

RESUMO

Entanglement plays a critical role in determining the dynamic properties of polymer systems, e.g., resulting in slip links and pulley effects for achieving large deformation and high strength. Although it has been studied for decades, the mechanics of entanglements for stiffness-toughness conflict is not well understood. In this study, topological knot theory incorporating an extended tube model is proposed to understand the entanglements in a slide-ring (SR) gel, which slips over a long distance to achieve large deformation and high toughness via the pulley effect. Based on topological knot theory, the sliding behavior and pulley effect of entanglements among molecular chains and cross-linked rings are thoroughly investigated. Based on rubber elasticity theory, a free-energy function is formulated to describe mechanical toughening and slipping of topological knots, while the SR gel retains the same binding energy. Finally, the effectiveness of the proposed model is verified using both finite element analysis and experimental results reported in the literature.

9.
Inorg Chem ; 61(26): 10211-10219, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35723430

RESUMO

Pd-based metallenes have attracted great attention recently as newly burgeoning two-dimensional (2D) materials, attributed to their significantly increased active surface areas and intrinsic electrocatalytic activities. Therefore, they could be used as a potential candidate as the high-performance electrocatalyst for methanol oxidation reactions (MORs) in the direct methanol fuel cell. Herein, a new strategy is proposed to fabricate NiCoPd inlaid NiCo-bimetallene (NiCoPd/NiCo-bimetallene) by the structure directing effect of 18-crown-6 ether under an ultrasonic-pulse interface together with the HCHO reduction and atom-diffusion-aging process. NiCoPd ternary-alloys with uniformly dispersed Pd active sites are decorated onto NiCo-bimetallenes, achieving remarkably enhancing the effective utilization of Pd atoms. What is more, the intrinsic activity is enhanced by the "bifunctional mechanism" of NiCo-bimetallene adsorption of intermediate species and increased Pd-active sites. Moreover, the anti-CO poisoning ability is optimized through the "alloying ligand effect" of NiCoPd. Therefore, the NiCoPd/NiCo-bimetallene exhibits excellent mass activity for MOR, which is higher than commercial Pd/C. This work suggests a new way of the Pd-based metallenes catalyst approach to the efficient electrocatalytic MOR.

10.
Mar Drugs ; 20(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323467

RESUMO

Marine macroalgae, contributing much to the bioeconomy, have inspired tremendous attention as sustainable raw materials. Ulvan, as one of the main structural components of green algae cell walls, can be degraded by ulvan lyase through the ß-elimination mechanism to obtain oligosaccharides exhibiting several good physiological activities. Only a few ulvan lyases have been characterized until now. This thesis explores the properties of a new polysaccharide lyase family 25 ulvan lyase TsUly25B from the marine bacterium Thalassomonas sp. LD5. Its protein molecular weight was 54.54 KDa, and it was most active under the conditions of 60 °C and pH 9.0. The Km and kcat values were 1.01 ± 0.05 mg/mL and 10.52 ± 0.28 s-1, respectively. TsUly25B was salt-tolerant and NaCl can significantly improve its thermal stability. Over 80% of activity can be preserved after being incubated at 30 °C for two days when the concentration of NaCl in the solution is above 1 M, while 60% can be preserved after incubation at 40 °C for 10 h with 2 M NaCl. TsUly25B adopted an endolytic manner to degrade ulvan polysaccharides, and the main end-products were unsaturated ulvan disaccharides and tetrasaccharides. In conclusion, our research enriches the ulvan lyase library and advances the utilization of ulvan lyases in further fundamental research as well as ulvan oligosaccharides production.


Assuntos
Proteínas de Bactérias , Gammaproteobacteria/enzimologia , Polissacarídeo-Liases , Polissacarídeos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Gammaproteobacteria/genética , Conformação Molecular , Filogenia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Proteínas Recombinantes/química , Cloreto de Sódio/química
11.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080809

RESUMO

In this study, polyacrylic acid (PAA) films were deposited onto a quartz surface acoustic wave (SAW) resonator using a spin-coating technique for ammonia sensing operated at room temperature, and the sensing mechanisms and performance were systematically studied. The oxygen-containing functional groups on the surfaces of the PAA film make it sensitive and selective to ammonia molecules, even when tested at room temperature. The ammonia molecules adsorbed by the oxygen-containing functional groups of PAA (e.g., hydroxyl and epoxy groups) increase the membrane's stiffness, which was identified as the primary mechanism leading to the positive frequency shifts. However, mass loading due to adsorption of ammonia molecules is not a major reason as it will result in a negative frequency shifts. When the PAA coated SAW sensor was exposed to ammonia with a low concentration of 500 ppb, it showed a positive frequency shift of 225 Hz, with both good repeatability and stability, as well as a good selectivity to ammonia compared with those to C2H5OH, H2, HCl, H2S, CO, NO2, NO, and CH3COCH3.

12.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080831

RESUMO

A simulated design for a temperature-compensated voltage sensor based on photonic crystal fiber (PCF) infiltrated with liquid crystal and ethanol is presented in this paper. The holes distributed across the transverse section of the PCF provide two channels for mode coupling between the liquid crystal or ethanol and the fiber core. The couplings are both calculated accurately and explored theoretically using the finite element method (FEM). The influence of voltage on the alignment of the liquid crystal molecules and confinement loss of the fiber mode are studied. Liquid crystal molecules rotate which changes its properties as the voltage changes. As the characteristics of the liquid crystal will be affected by temperature, therefore, we further fill using ethanol, which is merely sensitive to temperature, into one hole of the PCF to realize temperature compensation. The simulated results show that the sensitivity is up to 1.29977 nm/V with the temperature of 25 °C when the voltage ranges from 365 to 565 V. The standard deviation of the wavelength difference is less than 2 nm within the temperature adjustment from 25 to 50 °C for temperature compensation. The impacts of the construction parameters of the PCF on sensing performances of this voltage sensor are also analyzed in this paper.

13.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746129

RESUMO

The key challenge for a lab-on-chip (LOC) device is the seamless integration of key elements of biosensing and actuation (e.g., biosampling or microfluidics), which are conventionally realised using different technologies. In this paper, we report a convenient and efficient LOC platform fabricated using an electrode patterned flexible printed circuit board (FPCB) pressed onto a piezoelectric film coated substrate, which can implement multiple functions of both acoustofluidics using surface acoustic waves (SAWs) and sensing functions using electromagnetic metamaterials, based on the same electrode on the FPCB. We explored the actuation capability of the integrated structure by pumping a sessile droplet using SAWs in the radio frequency range. We then investigated the hybrid sensing capability (including both physical and chemical ones) of the structure employing the concept of electromagnetic split-ring resonators (SRRs) in the microwave frequency range. The originality of this sensing work is based on the premise that the proposed structure contains three completely decoupled resonant frequencies for sensing applications and each resonance has been used as a separate physical or a chemical sensor. This feature compliments the acoustofluidic capability and is well-aligned with the goals set for a successful LOC device.


Assuntos
Microfluídica , Som , Ondas de Rádio , Vibração
14.
Langmuir ; 37(40): 11851-11858, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34585928

RESUMO

Ice accumulation causes great risks to aircraft, electric power lines, and wind-turbine blades. For the ice accumulation on structural surfaces, ice adhesion force is a crucial factor, which generally has two main sources, for exampple, electrostatic force and mechanical interlocking. Herein, we present that surface acoustic waves (SAWs) can be applied to minimize ice adhesion by simultaneously reducing electrostatic force and mechanical interlocking, and generating interface heating effect. A theoretical model of ice adhesion considering the effect of SAWs is first established. Experimental studies proved that the combination of nanoscale vibration and interface heating effects lead to the reduction of ice adhesion on the substrate. With the increase of SAW power, the electrostatic force decreases due to the increase of dipole spacings, which is mainly attributed to the SAW induced nanoscale surface vibration. The interface heating effect leads to the transition of the locally interfacial contact phase from solid-solid to solid-liquid, hence reducing the mechanical interlocking of ice. This study presents a strategy of using SAWs device for ice adhesion reduction, and results show a considerable potential for application in deicing.

15.
Analyst ; 146(18): 5704-5713, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515697

RESUMO

Detecting volatile organic compounds (VOCs) in human breath is critical for the early diagnosis of diseases. Good selectivity of VOC sensors is crucial for the accurate analysis of VOC biomarkers in human breath, which consists of more than 200 types of VOCs. In this paper, a flexible virtual sensor array (FVSA) was proposed based on a sensing layer of MXene and laser-induced graphene interdigital electrodes (LIG-IDEs) for detecting VOCs in exhaled human breath. The fabrication of LIG-IDEs avoids the costly and complicated procedures required for the preparation of traditional IDEs. The FVSA's responses of multiple parameters help build a unique fingerprint for each VOC, without a need for changing the temperature of the sensing element, which is commonly used in the VSA of semiconductor VOC sensors. Based on machine learning algorithms, we have achieved highly precise recognition of different VOCs and mixtures and accurate prediction (accuracy of 89.1%) of the objective VOC's concentration in variable backgrounds using this proposed FVSA. Moreover, a blind analysis validates the capacity of the FVSA to identify alcohol content in human breath with an accuracy of 88.9% using breath samples from volunteers before and after alcohol consumption. These results show that the proposed FVSA is promising for the detection of VOC biomarkers in human exhaled breath and early diagnosis of diseases.


Assuntos
Grafite , Compostos Orgânicos Voláteis , Biomarcadores , Testes Respiratórios , Humanos , Lasers
16.
Nano Lett ; 20(5): 3263-3270, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32233442

RESUMO

The ability to actuate liquids remains a fundamental challenge in smart microsystems, such as those for soft robotics, where devices often need to conform to either natural or three-dimensional solid shapes, in various orientations. Here, we propose a hierarchical nanotexturing of piezoelectric films as active microfluidic actuators, exploiting a unique combination of both topographical and chemical properties on flexible surfaces, while also introducing design concepts of shear hydrophobicity and tensile hydrophilicity. In doing so, we create nanostructured surfaces that are, at the same time, both slippery (low in-plane pinning) and sticky (high normal-to-plane liquid adhesion). By enabling fluid transportation on such arbitrarily shaped surfaces, we demonstrate efficient fluid motions on inclined, vertical, inverted, or even flexible geometries in three dimensions. Such surfaces can also be deformed and then reformed into their original shapes, thereby paving the way for advanced microfluidic applications.

17.
Nano Lett ; 20(1): 201-207, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31855438

RESUMO

Recent discovery of piezoelectricity that existed in two-dimensional (2D) layered materials represents a key milestone for flexible electronics and miniaturized and wearable devices. However, so far the reported piezoelectricity in these 2D layered materials is too weak to be used for any practical applications. In this work, we discovered that grain boundaries (GBs) in monolayer MoS2 can significantly enhance its piezoelectric property. The output power of piezoelectric devices made of the butterfly-shaped monolayer MoS2 was improved about 50% by the GB-induced piezoelectric effect. The enhanced piezoelectricity is attributed to the additional piezoelectric effect induced by the existence of deformable GBs which can promote polarization and generates spontaneous polarization with different piezoelectric coefficients along various directions. We further made a flexible piezoelectric device based on the 2D MoS2 with the GBs and demonstrated its potential application in self-powered precision sensors for in situ detecting pressure changes in human blood for health monitoring.


Assuntos
Dissulfetos/química , Fontes de Energia Elétrica , Molibdênio/química , Dispositivos Eletrônicos Vestíveis , Humanos
18.
Langmuir ; 36(34): 10175-10186, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32787026

RESUMO

Droplet impact on arbitrary inclined surfaces is of great interest for applications such as antifreezing, self-cleaning, and anti-infection. Research has been focused on texturing the surfaces to alter the contact time and rebouncing angle upon droplet impact. In this paper, using propagating surface acoustic waves (SAWs) along the inclined surfaces, we present a novel technique to modify and control key droplet impact parameters, such as impact regime, contact time, and rebouncing direction. A high-fidelity finite volume method was developed to explore the mechanisms of droplet impact on the inclined surfaces assisted by SAWs. Numerical results revealed that applying SAWs modifies the energy budget inside the liquid medium, leading to different impact behaviors. We then systematically investigated the effects of inclination angle, droplet impact velocity, SAW propagation direction, and applied SAW power on the impact dynamics and showed that by using SAWs, droplet impact on the nontextured hydrophobic and inclined surface is effectively changed from deposition to complete rebound. Moreover, the maximum contact time reduction up to ∼50% can be achieved, along with an alteration of droplet spreading and movement along the inclined surfaces. Finally, we showed that the rebouncing angle along the inclined surface could be adjusted within a wide range.

19.
Inorg Chem ; 59(2): 1218-1226, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31891266

RESUMO

A nanostructural catalyst with long-term durability under harsh conditions is very important for an outstanding catalytic performance. Herein, a new ultrastable PtCo/Co3O4-SiO2 nanocatalyst was explored to improve the catalytic performance of carbon monoxide (CO) oxidation by virtue of the surface active lattice oxygen derived from strong metal-support interactions. Such a structure can overcome the issues of Co3O4-SiO2 inactivation by water vapor and the Pt inferior activity at low temperature. Further, Co3O4-SiO2 nanosheets endow superior structure stability under high temperatures of up to 800 °C, which gives long-term catalytic cyclability of PtCo/Co3O4-SiO2 nanocomposites for CO oxidation. Moreover, the large specific surface areas (294 m2 g-1) of the nanosheet structure can expose abundant surface active lattice oxygen, which significantly enhanced the catalytic activity of CO oxidation at 50 °C over 30 days without apparent aggregation of PtCo nanoparticles after 20 cycles from 50 to 400 °C. It can be expected to be a promising candidate as an ultrastable efficient catalyst.

20.
Inorg Chem ; 59(9): 6018-6025, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32314921

RESUMO

Nickel dichalcogenides have received extensive attention as promising noble-metal-free nanocatalysts for a hydrogen evolution reaction. Nonetheless, their catalytic performance is restricted by the sluggish reaction kinetics, limited exposed active sites, and poor conductivity. In this work, we report on an effective strategy to solve those problems by using an as-designed new porous-C/Ni2SeS nanocatalyst with the Ni2SeS nanostubs anchored on with porous-carbon skeletons process. On the basis of three advantages, as the enhancement of the intrinsic activity using the ternary sulfoselenide, increased number of exposed active sites due to the 3D hollow substrate, and increased conductivity caused by porous-carbon skeletons, the resulting porous-C/Ni2SeS requires an overpotential of only 121 mV at a current density of 10 mA cm-2 with a Tafel slope of 78 mV dec-1 for hydrogen evolution in acidic media and a good long-term stability. Density functional theory calculations also show that the Gibbs free energy of hydrogen adsorption of the Ni2SeS was -0.23 eV, which not only is close to the ideal value (0 eV) and Pt reference (-0.09 eV) but also is lower than those of NiS2 and NiSe2; large electrical states exist in the vicinity of the Fermi level, which further improves its electrocatalytic performance. This work provides new insights into the rational design of ternary dichalcogenides and hollow structure materials for practical applications in HER catalysis and energy fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA