Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Virol Sin ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914259

RESUMO

Next-generation sequencing (NGS) has significantly improved the accuracy and efficiency of pathogen diagnosis for a wide range of diseases. In this study, viral metagenomics analysis was conducted on fecal and tissue samples from a 13-year-old recipient of hematopoietic stem cell transplantation (HSCT) afflicted with severe lingual papillomatosis. The analysis revealed a high abundance of adeno-associated virus 2 (AAV2), alongside potential helper viruses, herpesvirus type 1 (HSV-1), and the uncommon adenovirus serotype 18 (AdV18). Although a direct causal relationship was not definitively established, the concurrence of these viruses indicated a plausible link to the development of severe lingual papillomatosis in immunocompromised individuals. Notably, the study generated a complete genome sequence of AdV18, offering insights into adenovirus genetic variability, origin, and pathogenicity. Noteworthy findings include three amino acid substitutions in the polymerase and one in the hexon, distinguishing them from previously published strains of AdV18. Phylogenetic analysis unveiled a close relationship between both the polymerase and hexon regions of AdV18 in our study and previously reported AdV18 sequences. This study underscores the pivotal role of comprehensive viral scrutiny in elucidating infections among HSCT patients with lingual papillomatosis.

2.
Virol J ; 10: 183, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23742026

RESUMO

BACKGROUND: Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract. Currently, there is no clinically approved vaccine against RSV infection. Recent studies have shown that helper-dependent adenoviral (HDAd) vectors may represent effective and safe vaccine vectors. However, viral challenge has not been investigated following mucosal vaccination with HDAd vector vaccines. METHODS: To explore the role played by HDAd as an intranasally administered RSV vaccine vector, we constructed a HDAd vector encoding the codon optimized fusion glycoprotein (Fsyn) of RSV, designated HDAd-Fsyn, and delivered intranasally HDAd-Fsyn to mice. RESULTS: RSV-specific humoral and cellular immune responses were generated in BALB/c mice, and serum IgG with neutralizing activity was significantly elevated after a homologous boost with intranasal (i.n.) application of HDAd-Fsyn. Humoral immune responses could be measured even 14 weeks after a single immunization. Immunization with i.n. HDAd-Fsyn led to effective protection against RSV infection on challenge. CONCLUSION: The results indicate that HDAd-Fsyn can induce powerful systemic immunity against subsequent i.n. RSV challenge in a mouse model and is a promising candidate vaccine against RSV infection.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Adenoviridae/genética , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Portadores de Fármacos , Feminino , Vetores Genéticos , Imunoglobulina G/sangue , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/genética , Carga Viral
3.
Viruses ; 15(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36851535

RESUMO

The Omicron variant is currently ravaging the world, raising serious concern globally. Monitoring genomic variations and determining their influence on biological features are critical for tracing its ongoing transmission and facilitating effective measures. Based on large-scale sequences from different continents, this study found that: (i) The genetic diversity of Omicron is much lower than that of the Delta variant. Still, eight deletions (Del 1-8) and 1 insertion, as well as 130 SNPs, were detected on the Omicron genomes, with two deletions (Del 3 and 4) and 38 SNPs commonly detected on all continents and exhibiting high-occurring frequencies. (ii) Four groups of tightly linked SNPs (linkage I-IV) were detected, among which linkage I, containing 38 SNPs, with 6 located in the RBD, increased its occurring frequency remarkably over time. (iii) The third codons of the Omicron shouldered the most mutation pressures, while the second codons presented the least flexibility. (iv) Four major mutants with amino acid substitutions in the RBD were detected, and further structural analysis suggested that the substitutions did not alter the viral receptor binding ability greatly. It was inferred that though the Omicron genome harbored great changes in antigenicity and remarkable ability to evade immunity, it was immune-pressure selected. This study tracked mutational signatures of Omicron variant and the potential biological significance of the SNPs, and the linkages await further functional verification.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Mutação , Substituição de Aminoácidos
4.
Front Microbiol ; 14: 1298026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111642

RESUMO

The COVID-19 pandemic has resulted in the implementation of strict mitigation measures that have impacted the transmission dynamics of human respiratory syncytial virus (HRSV). The measures also have the potential to influence the evolutionary patterns of the virus. In this study, we conducted a comprehensive analysis comparing genomic variations and evolving characteristics of its neutralizing antigens, specifically F and G proteins, before and during the COVID-19 pandemic. Our findings showed that both HRSV A and B exhibited an overall chronological evolutionary pattern. For the sequences obtained during the pandemic period (2019-2022), we observed that the HRSV A distributed in A23 genotype, but formed into three subclusters; whereas the HRSV B sequences were relatively concentrated within genotype B6. Additionally, multiple positively selected sites were detected on F and G proteins but none were located at neutralizing antigenic sites of the F protein. Notably, amino acids within antigenic site III, IV, and V of F protein remained strictly conserved, while some substitutions occurred over time on antigenic site Ø, I, II and VIII; substitution S389P on antigenic site I of HRSV B occurred during the pandemic period with nearly 50% frequency. However, further analysis revealed no substitutions have altered the structural conformations of the antigenic sites, the vial antigenicity has not been changed. We inferred that the intensive public health interventions during the COVID-19 pandemic did not affect the evolutionary mode of HRSV.

5.
Front Microbiol ; 13: 1041338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466668

RESUMO

Human respiratory syncytial virus (RSV) is a ubiquitous pediatric pathogen causing serious lower respiratory tract disease worldwide. No licensed vaccine is currently available. In this work, the coding gene for mDS-Dav1, the full-length and prefusion conformation RSV fusion glycoprotein (F), was designed by introducing the stabilized prefusion F (preF) mutations from DS-Cav1 into the encoding gene of wild-type RSV (wtRSV) F protein. The recombinant adenovirus encoding mDS-Cav1, rChAd63-mDS-Cav1, was constructed based on serotype 63 chimpanzee adenovirus vector and characterized in vitro. After immunizing mice via intranasal route, the rChAd63-mDS-Cav1 induced enhanced neutralizing antibody and F-specific CD8+ T cell responses as well as good immune protection against RSV challenge with the absence of enhanced RSV disease (ERD) in BALB/c mice. The results indicate that rChAd63-mDS-Cav1 is a promising mucosal vaccine candidate against RSV infection and warrants further development.

6.
Epilepsy Behav ; 20(4): 681-5, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21439911

RESUMO

A recent study suggests that the P86L polymorphism (rs2986017) in the calcium homeostasis modulator 1 (CALHM1) gene interferes with calcium homeostasis and increases amyloid ß (Aß) levels. Moreover, in vitro and in vivo data show that both calcium homeostasis and high levels of Aß play an important role in the induction and maintenance of epileptic seizures in hippocampus, indicating CALHM1 might play a potential role in pathophysiological pathways involved in temporal lobe epilepsy (TLE). The aim of this study was to investigate the genetic contribution of CALHM1 to TLE. Five single-nucleotide polymorphisms (SNPs) of CALHM1 were selected and genotyped using polymerase chain reaction restriction fragment length polymorphism in 560 patients with TLE and 401 healthy controls. We found a positive association between rs11191692 and TLE, but a negative result between rs2986017 and TLE. The rs11191692-A allele frequency was found in 32.4% of the patients and in 26.2% of control subjects (OR=1.35, 95% CI=1.10-1.65, uncorrected P=0.003, corrected P=0.015). Furthermore, the positive association between rs11191692 and TLE independent of apolipoprotein E ε4 was supported by five SNPs haplotype analysis. The results of this study provide the first evidence that the SNP rs11191692 in CALHM1 confers highly increased susceptibility to TLE.


Assuntos
Canais de Cálcio/genética , Epilepsia do Lobo Temporal/genética , Predisposição Genética para Doença , Glicoproteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Apolipoproteína E4/genética , Distribuição de Qui-Quadrado , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
7.
Sci Rep ; 11(1): 12941, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155268

RESUMO

Human respiratory syncytial viruses (RSVs) are classified into two major groups (A and B) based on antigenic differences in the G glycoprotein. To investigate circulating characteristics and phylodynamic history of RSV, we analyzed the genetic variability and evolutionary pattern of RSVs from 1977 to 2019 in this study. The results revealed that there was no recombination event of intergroup. Single nucleotide polymorphisms (SNPs) were observed through the genome with the highest occurrence rate in the G gene. Five and six sites in G protein of RSV-A and RSV-B, respectively, were further identified with a strong positive selection. The mean evolutionary rates for RSV-A and -B were estimated to be 1.48 × 10-3 and 1.92 × 10-3 nucleotide substitutions/site/year, respectively. The Bayesian skyline plot showed a constant population size of RSV-A and a sharp expansion of population size of RSV-B since 2005, and an obvious decrease 5 years later, then became stable again. The total population size of RSVs showed a similar tendency to that of RSV-B. Time-scaled phylogeny suggested a temporal specificity of the RSV-genotypes. Monitoring nucleotide changes and analyzing evolution pattern for RSVs could give valuable insights for vaccine and therapy strategies against RSV infection.


Assuntos
Evolução Molecular , Variação Genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Teorema de Bayes , Genes Virais , Genótipo , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , RNA Viral , Recombinação Genética , Seleção Genética
8.
Front Microbiol ; 12: 750725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691002

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been emerging and circulating globally since the start of the COVID-19 pandemic, of which B.1.617 lineage that was first reported in India at the end of 2020, soon became predominant. Tracing genomic variations and understanding their impact on the viral properties are the foundations for the vaccine and drug development and for the mitigation measures to be taken or lifted. In this study, 1,051 near-complete genomes and 1,559 spike (S) sequences belonging to the B.1.617 were analyzed. A genome-wide spread of single nucleotide polymorphisms (SNPs) was identified. Of the high frequency mutations identified, 61% (11/18) involved structural proteins, despite two third of the viral genome encoding nonstructural proteins. There were 22 positive selection sites, mostly distributed across the S protein, of which 16 were led by non-C to U transition and should be of a special attention. Haplotype network revealed that a large number of daughter haplotypes were continually derived throughout the pandemic, of which H177, H181 H219 and H286 from the ancestor haplotype H176 of B.1.617.2 were widely prevalent. Besides the well known substitutions of L452R, P681R and deletions of E156 and F157, as well as the potential biological significance, structural analysis in this study still indicated that new amino acid changes in B.1.617, such as E484Q and N501Y, had reshaped the viral bonding network, and increasingly sequenced N501Y mutant with a potential enhanced binding ability was detected in many other countries in the follow-up monitoring. Although we can't conclude the properties of all the mutants including N501Y thoroughly, it merits focusing on their spread epidemically and biologically.

9.
Virol Sin ; 36(4): 706-720, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33559831

RESUMO

Human respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5' to 3') a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Chlorocebus aethiops , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Vacinas Atenuadas/genética , Células Vero , Replicação Viral
10.
Biochem Biophys Res Commun ; 391(1): 857-61, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19945423

RESUMO

Helper-dependent adenoviral (HDAd) vectors were developed primarily for genetic disease therapy by deleting all coding regions for attenuating the host cellular immune response to adenovirus (Ad) and long-lasting gene expression. Recently Harui et al. reported that HDAd vaccine could stimulate superior transgene-specific cytotoxic T lymphocyte (CTL) and antibody responses via the intraperitoneal route, compared to first-generation adenoviral (FGAd) vaccine. This prompted us to explore the potential of HDAd as a vaccine vector administrated intranasally. In this study, we prepared HDAd and FGAd vectors expressing enhanced green fluorescent protein (EGFP), respectively, and compared their efficacy in mice. Mice were immunized intranasally with 5x10(9) vp HDAd or FGAd vector particles. Despite stimulating similar anti-Ad antibody responses with FGAd vaccine in the prime/boost strategy, HDAd vector expressing EGFP displayed superior transgene-specific serum IgG, mucosal IgA and cellular immune response, with the characterization of balanced or mixed Th1/Th2 CD4+ T-cell responses. Meanwhile, a single dose of intranasal (i.n.) vaccine of HDAd-EGFP induced a serum IgG response with more efficacy than FGAd-EGFP. In addition, i.n. boost immunization enhanced transgene-specific humoral and cellular responses, compared to single i.n. HDAd-EGFP immunization. Our results suggest that HDAd has potential for a mucosal vaccine vector via i.n. route, which will be useful for the development of vaccines against respiratory viruses, such as respiratory syncytial virus and influenza virus.


Assuntos
Adenoviridae/imunologia , Vetores Genéticos/imunologia , Vírus Auxiliares/imunologia , Vacinas Virais/imunologia , Infecções por Adenoviridae/prevenção & controle , Administração Intranasal , Animais , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/imunologia , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Transgenes , Vacinação , Vacinas Virais/administração & dosagem
11.
Biochem Biophys Res Commun ; 395(1): 87-92, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20350532

RESUMO

Human respiratory syncytial virus (RSV), for which no clinically approved vaccine is available yet, is globally a serious pediatric pathogen of the lower respiratory tract. Several approaches have been used to develop vaccines against RSV, but none of these have been approved for use in humans. An efficient vaccine-enhancing strategy for RSV is still urgently needed. We found previously that oral SL7207/pcDNA3.1/F and intranasal FGAd/F were able to induce an effective protective immune response against RSV. The heterologous prime-boost immunization regime has been reported recently to be an efficient vaccine-enhancing strategy. Therefore, we investigated the ability of an oral SL7207/pcDNA3.1/F prime and intranasal (i.n.) FGAd/F boost regimen to generate immune responses to RSV. The SL7207/pcDNA3.1/F prime-FGAd/F boost regimen generated stronger RSV-specific humoral and mucosal immune responses in BALB/c mice than the oral SL7207/pcDNA3.1/F regimen alone, and stronger specific cellular immune responses than the i.n. FGAd/F regimen alone. Histopathological analysis showed an increased efficacy against RSV challenge by the heterologous prime-boost regimen. These results suggest that such a heterologous prime-boost strategy can enhance the efficacy of either the SL7207 or the FGAd vector regimen in generating immune responses in BALB/c mice.


Assuntos
Imunização Secundária/métodos , Pneumonia Viral/prevenção & controle , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Salmonella typhimurium/imunologia , Vacinação/métodos , Adenoviridae/imunologia , Adenoviridae/fisiologia , Animais , Formação de Anticorpos , Feminino , Vetores Genéticos/imunologia , Vetores Genéticos/fisiologia , Humanos , Imunidade Celular , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Viral/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Vacinas contra Vírus Sincicial Respiratório/genética , Replicação Viral
12.
Evol Bioinform Online ; 16: 1176934320954870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35173405

RESUMO

Monitoring the mutation and evolution of the virus is important for tracing its ongoing transmission and facilitating effective vaccine development. A total of 342 complete genomic sequences of SARS-CoV-2 were analyzed in this study. Compared to the reference genome reported in December 2019, 465 mutations were found, among which, 347 occurred in only 1 sequence, while 26 occurred in more than 5 sequences. For these 26 further identified as SNPs, 14 were closely linked and were grouped into 5 profiles. Phylogenetic analysis revealed the sequences formed 2 major groups. Most of the sequences in late period (March and April) constituted the Cluster II, while the sequences before March in this study and the reported S/L and A/B/C types in previous studies were all in Cluster I. The distributions of some mutations were specific geographically or temporally, the potential effect of which on the transmission and pathogenicity of SARS-CoV-2 deserves further evaluation and monitoring. Two mutations were found in the receptor-binding domain (RBD) but outside the receptor-binding motif (RBM), indicating that mutations may only have marginal biological effects but merit further attention. The observed novel sequence divergence is of great significance to the study of the transmission, pathogenicity, and development of an effective vaccine for SARS-CoV-2.

13.
Virology ; 535: 171-178, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31306912

RESUMO

Human respiratory syncytial virus (RSV) is one of the predominant pathogens causing lower respiratory tract infection in infants and young children worldwide, whereas there is so far no vaccine or drug against RSV infection for clinical use. In this work, we developed and validated a fluorescence-based high-throughput screening (HTS) assay to identify compounds active against RSV, using RSV-mGFP, a recombinant RSV encoding enhanced green fluorescent protein (EGFP). Thereafter, among 54,800 compounds used for our screen, we obtained 62 compounds active against RSV. Among these hits, azathioprine (AZA) and 6-mercaptopurine (6-MP) were identified as RSV inhibitors with half maximal inhibitory concentration (IC50) values of 6.69 ±â€¯1.41 and 3.13 ±â€¯0.98 µM, respectively. Further experiments revealed that they functioned by targeting virus transcription or/and genome replication. In conclusion, the established HTS assay is suitable to screen anti-RSV compounds, and the screened two hits of AZA and 6-MP, as potential anti-RSV agents targeting RSV genome replication/transcription, are worthy of further investigation on their anti-RSV activity in vivo.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Coloração e Rotulagem/métodos
14.
Viruses ; 10(1)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29342954

RESUMO

Human respiratory syncytial virus (RSV) is the most significant cause of acute lower respiratory infection in children. However, there is no licensed vaccine available. Here, we investigated the effect of five or 20 copies of C-Class of CpG ODN (CpG-C) motif incorporated into a plasmid DNA vaccine encoding RSV fusion (F) glycoprotein on the vaccine-induced immune response. The addition of CpG-C motif enhanced serum binding and virus-neutralizing antibody responses in BALB/c mice immunized with the DNA vaccines. Moreover, mice vaccinated with CpG-modified vaccines, especially with the higher 20 copies, resulted in an enhanced shift toward a Th1-biased antibody and T-cell response, a decrease in pulmonary pathology and virus replication, and a decrease in weight loss after RSV challenge. This study suggests that CpG-C motif, cloned into the backbone of DNA vaccine encoding RSV F glycoprotein, functions as a built-in adjuvant capable of improving the efficacy of DNA vaccine against RSV infection.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Células Th1/imunologia , Vacinas de DNA/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Pulmão/virologia , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/administração & dosagem , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano
15.
Biomed Res Int ; 2018: 8431243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568767

RESUMO

Human respiratory syncytial virus (RSV) is the single most important cause of lower respiratory tract disease in infants and young children and a major viral agent responsible for respiratory tract disease in immunosuppressed individuals and the elderly, but no vaccines and antiviral drugs are available. Herein the recombinant RSV (rRSV) encoding enhanced green fluorescence protein (EGFP, rRSV-EGFP) was constructed and the potential for screening anti-RSV drugs was investigated. The recombinant plasmid of pBRATm-rRSV-EGFP, containing T7 transcription cassette composed of T7 promoter, RSV antigenomic cDNA with EGFP gene, HDV ribozyme (δ), and T7 terminator in the order of 5' to 3', was constructed and cotransfected into BHK/T7-9 cells together with helper plasmids encoding N, P, L, and M2-1 gene, respectively. The rescued rRSV-EGFP was confirmed by increasing expression of EGFP over blind passages and by RT-PCR. rRSV-EGFP was comparable to the other two recombinant RSVs encoding red fluorescent protein (RFP, rRSV-RFP) or luciferase (Luc, rRSV-Luc) in the growth kinetic, and there was a difference in sensitivity between them for screening anti-RSV agents based on infection of HEp-2 cells. The EGFP-encoding rRSV has been constructed and rescued successfully and has the potential for high-throughput anti-RSV drug screening in vitro.


Assuntos
Antivirais/farmacologia , Proteínas de Fluorescência Verde/genética , Recombinação Genética/genética , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Fluorescência , Células HEK293 , Humanos , RNA Mensageiro/genética , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Células Vero , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
16.
Int Immunopharmacol ; 46: 62-69, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28259002

RESUMO

Human respiratory syncytial virus (RSV) is the most important cause of serious lower respiratory tract infection in infants, the elderly, and the immunocompromised population. There is no licensed vaccine against RSV until now. It has been reported that targeting antigen to DEC205, a phagocytosis receptor on dendritic cells (DCs), could induce enhanced CD4+ and CD8+ T cell responses in mice. To develop RSV DNA vaccine and target the encoded antigen protein to DCs, the ectodomain of fusion glycoprotein (sF, amino acids: 23-524) of RSV was fused with anti-DEC205 single-chain Fv fragment (scDEC) and designated scDECF. Following successful expression from the recombinant plasmid of pVAX1/scDECF, the recombinant protein of scDECF was found capable of specifically binding to DEC205 receptor on CHOmDEC205 cells, and facilitating uptake of RSV F by DC2.4 cells in vitro. Furthermore, the higher levels of RSV-specific IgG antibody responses and neutralization antibody titers, as well as RSV F-specific CD8+ T cell responses were induced in mice immunized intramuscularly by pVAX1/scDECF than by the control plasmid of pVAX1/scISOF encoding sF protein fused with isotype matched control single-chain Fv fragment (scISO). Compared with pVAX1/scISOF, both the ratio of IgG2a/IgG1, >1, and the enhanced IFN-γ cytokine were induced in mice following pVAX1/scDECF immunization, which exhibited a Th1 dominant response in pVAX1/scDECF vaccinated mice. Notably, the elevated efficiency of RSV F protein bound by DCs in vivo could also be observed in mice inoculated by pVAX1/scDECF. Collectively, these results demonstrate the enhanced IgG and CD8+ T cell immune responses have been induced successfully by DNA vaccine against RSV by targeting F antigen to DCs via the DEC205 receptor, and this DC-targeting vaccine strategy merits further investigation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Vacinas Virais/imunologia , Idoso , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , ELISPOT , Humanos , Imunidade Celular , Hospedeiro Imunocomprometido , Lactente , Recém-Nascido , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Anticorpos de Cadeia Única/genética , Vacinação , Vacinas de DNA , Vacinas Virais/genética
17.
Antiviral Res ; 144: 57-69, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28529001

RESUMO

Human respiratory syncytial virus (RSV) is an important pediatric pathogen causing acute viral respiratory disease in infants and young children. However, no licensed vaccines are currently available. Virus-like particles (VLPs) may bring new hope to producing RSV VLP vaccine with high immunogenicity and safety. Here, we constructed the recombinants of matrix protein (M) and fusion glycoprotein (F) of RSV, respectively into a replication-deficient first-generation adenoviral vector (FGAd), which were used to co-infect Vero cells to assemble RSV VLPs successfully. The resulting VLPs showed similar immunoreactivity and function to RSV virion in vitro. Moreover, Th1 polarized response, and effective mucosal virus-neutralizing antibody and CD8+ T-cell responses were induced by a single intranasal (i.n.) administration of RSV VLPs rather than intramuscular (i.m.) inoculation, although the comparable RSV F-specific serum IgG and long-lasting RSV-specific neutralizing antibody were detected in the mice immunized by both routes. Upon RSV challenge, VLP-immunized mice showed increased viral clearance but decreased signs of enhanced lung pathology and fewer eosinophils compared to mice immunized with formalin-inactivated RSV (FI-RSV). In addition, a single i.n. RSV VLP vaccine has the capability to induce RSV-specific long-lasting neutralizing antibody responses observable up to 15 months. Our results demonstrate that the long-term and memory immune responses in mice against RSV were induced by a single i.n. administration of RSV VLP vaccine, suggesting a successful approach of RSV VLPs as an effective and safe mucosal vaccine against RSV infection, and an applicable and qualified platform of FGAd-infected Vero cells for VLP production.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Adenoviridae/genética , Administração Intranasal , Animais , Anticorpos Neutralizantes/análise , Anticorpos Antivirais/análise , Sangue/imunologia , Linfócitos T CD8-Positivos/imunologia , Chlorocebus aethiops , Vetores Genéticos , Imunidade nas Mucosas , Imunoglobulina G/sangue , Camundongos , Vacinas contra Vírus Sincicial Respiratório/genética , Fatores de Tempo , Vacinas de Partículas Semelhantes a Vírus/genética , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
18.
Immunol Lett ; 179: 95-101, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27688078

RESUMO

Human respiratory syncytial virus (RSV) can cause serious infection in the lower respiratory tract, especially in infants, young children, the elderly and the immunocompromised population worldwide. Previous study demonstrated the polypeptide (amino acids 148-198) of RSV attachment (G) glycoprotein, corresponding to the central conserved region and encompassing CX3C chemokine motif, could induce antibodies and protection from RSV challenge in mice [1,2]. In this study, we evaluated the immune efficacy of the recombinant DNA vaccine of pVAX1/3G148-198 encoding RSV G protein polypeptide. RSV specific serum IgG antibodies with neutralizing activity were stimulated following prime-boost immunization of pVAX1/3G148-198 intramuscularly, and the ratio of IgG2a/IgG1 was 4.93, indicating a Th1 biased immune response. After challenged intranasally with RSV Long, the vaccinated mice showed both decreased lung RSV titers, pulmonary inflammation and body weight loss. The results suggest that pVAX1/3G148-198 DNA vaccine may be an effective RSV vaccine candidate, and deserves further exploration.


Assuntos
Imunidade Celular , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Células Th1/imunologia , Vacinas de DNA/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Modelos Animais de Doenças , Eosinófilos , Feminino , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Humanos , Imunização , Imunoglobulina G/imunologia , Contagem de Leucócitos , Camundongos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/imunologia , Células Th1/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Carga Viral
19.
Antiviral Res ; 105: 72-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24560779

RESUMO

Sublingual (s.l.) immunization has been described as a convenient and safe way to induce mucosal immune responses in the respiratory and genital tracts. We constructed a helper-dependent adenoviral (HDAd) vector expressing a condon-optimized soluble fusion glycoprotein (sFsyn) of respiratory syncytial virus (HDAd-sFsyn) and explored the potential of s.l. immunization with HDAd-sFsyn to stimulate immune responses in the respiratory mucosa. The RSV specific systemic and mucosal immune responses were generated in BALB/c mice, and the serum IgG with neutralizing activity was significantly elevated after homologous boost with s.l. application of HDAd-sFsyn. Humoral immune responses could be measured even 14weeks after a single immunization. Upon challenge, s.l. immunization with HDAd-sFsyn displayed an effective protection against RSV infection. These findings suggest that s.l. administration of HDAd-sFsyn acts as an effective and safe mucosal vaccine against RSV infection, and may be a useful tool in the prevention of RSV infection.


Assuntos
Adenoviridae/genética , Portadores de Fármacos/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Administração Sublingual , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Feminino , Imunidade nas Mucosas , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/genética , Soro/imunologia , Vacinas Sintéticas/administração & dosagem
20.
Neurobiol Aging ; 35(11): 2657.e1-2657.e6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25018108

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder among the elderly individuals. Although there are several million cases of AD estimated in China with the most population in the world, no Chinese early-onset familial AD caused by new APP gene mutation has ever been reported. Here, we first described a Chinese family with early-onset AD that was inherited in autosomal dominant manner, and the age of onset was 46.6 ± 7.7 years (n = 5; range, 40-58 years). By using genetic analysis of 3 collected patients' DNA samples, we identified a heterozygous APP gene mutation (g.275363A>T, K724M according to APP770). Finally, when APP695 with K724M mutation was ectopically expressed in HEK293 cell, the ratio of amyloid-ß42 to amyloid-ß40 was 2.23-fold higher than that of wild-type control. Together, our data suggest that APP K724M gene mutation may contribute to the cause of this Chinese early-onset familial AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Povo Asiático/genética , Estudos de Associação Genética , Mutação , Fragmentos de Peptídeos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA