Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Lipid Res ; 62: 100001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33410750

RESUMO

Adiponectin, an adipocyte-derived protein, has antiatherogenic and antidiabetic effects, but how it confers the atherogenic effects is not well known. To study the antiatherogenic mechanisms of adiponectin, we examined whether it interacts with atherogenic low density lipoprotein (LDL) to attenuate LDL's atherogenicity. L5, the most electronegative subfraction of LDL, induces atherogenic responses similarly to copper-oxidized LDL (oxLDL). Unlike the native LDL endocytosed via the LDL receptor, L5 and oxLDL are internalized by cells via the lectin-like oxidized LDL receptor-1 (LOX-1). Using enzyme-linked immunosorbent assays (ELISAs), we showed that adiponectin preferentially bound oxLDL but not native LDL. In Chinese hamster ovary (CHO) cells transfected with the LOX-1 or LDL receptor, adiponectin selectively inhibited the uptake of oxLDL but not of native LDL, respectively. Furthermore, adiponectin suppressed the internalization of oxLDL in human coronary artery endothelial cells (HCAECs) and THP-1-derived macrophages. Western blot analysis of human plasma showed that adiponectin was abundant in L5 but not in L1, the least electronegative subfraction of LDL. Sandwich ELISAs with anti-adiponectin and anti-apolipoprotein B antibodies confirmed the binding of adiponectin to L5 and oxLDL. In LOX-1-expressing CHO cells, adiponectin inhibited cellular responses to oxLDL and L5, including nuclear factor-κB activation and extracellular signal-regulated kinas phosphorylation. In HCAECs, adiponectin inhibited oxLDL-induced endothelin-1 secretion and extracellular signal-regulated kinase phosphorylation. Conversely, oxLDL suppressed the adiponectin-induced activation of adenosine monophosphate-activated protein kinase in COS-7 cells expressing adiponectin receptor AdipoR1. Our findings suggest that adiponectin binds and inactivates atherogenic LDL, providing novel insight into the antiatherogenic mechanisms of adiponectin.


Assuntos
Adiponectina
2.
Environ Sci Technol ; 51(3): 1562-1569, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28001377

RESUMO

Precipitation reactions influence transport properties in porous media and can be coupled to advective and dispersive transport. For example, in subsurface environments, mixing of groundwater and injected solutions can induce mineral supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and microcomputed tomography (µ-CT) were employed as complementary techniques to evaluate advection, dispersion, and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through packed glass beads under two relative flow rates with Na2CO3 and CaCl2 in the inner and outer fluids, respectively. CaCO3 became supersaturated and formed a precipitate at the mixing interface between the two solutions. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution µ-CT imaging visualized the precipitate formed in the porous media. Formation of a precipitate minimized dispersive and advective transport between the two fluids and the shape of the precipitation front was influenced by the relative flow rates. This work demonstrates that the combined use of MRI and µ-CT can be highly complementary in the study of reactive transport processes in porous media.


Assuntos
Imageamento por Ressonância Magnética , Microtomografia por Raio-X , Carbonato de Cálcio , Água Subterrânea , Porosidade
3.
FASEB J ; 29(8): 3342-56, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25877213

RESUMO

The angiotensin II type 1 receptor (AT1) is a 7-transmembrane domain GPCR that when activated by its ligand angiotensin II, generates signaling events promoting vascular dysfunction and the development of cardiovascular disease. Here, we show that the single-transmembrane oxidized LDL (oxLDL) receptor (LOX-1) resides in proximity to AT1 on cell-surface membranes and that binding of oxLDL to LOX-1 can allosterically activate AT1-dependent signaling events. oxLDL-induced signaling events in human vascular endothelial cells were abolished by knockdown of AT1 and inhibited by AT1 blockade (ARB). oxLDL increased cytosolic G protein by 350% in Chinese hamster ovary (CHO) cells with genetically induced expression of AT1 and LOX-1, whereas little increase was observed in CHO cells expressing only LOX-1. Immunoprecipitation and in situ proximity ligation assay (PLA) assays in CHO cells revealed the presence of cell-surface complexes involving LOX-1 and AT1. Chimeric analysis showed that oxLDL-induced AT1 signaling events are mediated via interactions between the intracellular domain of LOX-1 and AT1 that activate AT1. oxLDL-induced impairment of endothelium-dependent vascular relaxation of vascular ring from mouse thoracic aorta was abolished by ARB or genetic deletion of AT1. These findings reveal a novel pathway for AT1 activation and suggest a new mechanism whereby oxLDL may be promoting risk for cardiovascular disease.


Assuntos
Lectinas/metabolismo , Lipoproteínas LDL/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de LDL Oxidado/metabolismo , Animais , Células CHO , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetulus , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Transdução de Sinais/fisiologia
4.
Circ J ; 80(12): 2541-2549, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27784857

RESUMO

BACKGROUND: Modified low-density lipoprotein (LDL) binding to scavenger receptors has been implicated in atherosclerosis. It is hypothesized that a third molecule may affect modified LDL binding, therefore, this study focuses on the soluble endogenous protein, developmental endothelial locus-1 (Del-1), as an inhibitor of oxidized LDL (oxLDL) interactions.Methods and Results:Del-1 preferentially bound oxLDL over native LDL in a cell-free binding assay. Del-1 also inhibited DiI-labeled oxLDL uptake by scavenger receptors irrespective of the receptor type (LOX-1, SR-AI, CD36, or SR-BI) expressed in COS-7 cells, and independent of cell type (human coronary artery endothelial cells (HCAECs) or THP-1-derived macrophages). Furthermore, Del-1 suppressed oxLDL-inducedMCP-1andICAM-1expression and endothelin-1 secretion in HCAECs. Then, male Del-1 transgenic (Del-1Tg) and wild-type mice (WT) mice were established and fed a Paigen diet for 20 weeks from the age of 24 weeks. While plasma lipid concentrations did not differ between WT and Del-1Tg mice, plasma LOX-1-ligand activity was significantly lower in Del-1Tg than in WT mice. Moreover, lipid accumulation in aortic roots was significantly less in the Del-1Tg mice, evaluated with Oil red-O. Taken together, Del-1 appears to block the activity of oxLDL pharmacologically by direct binding in vitro, and attenuates atherogenesis in vivo, although its role in physiological settings are yet to be resolved. CONCLUSIONS: Del-1 intercepted oxLDL before its receptor binding to reduce atherogenesis. (Circ J 2016; 80: 2541-2549).


Assuntos
Proteínas de Transporte/metabolismo , Lipoproteínas LDL/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Células COS , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Moléculas de Adesão Celular , Chlorocebus aethiops , Peptídeos e Proteínas de Sinalização Intercelular , Lipoproteínas LDL/genética , Masculino , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Ligação Proteica , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
5.
Environ Sci Technol ; 50(5): 2735-42, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836847

RESUMO

With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.


Assuntos
Caulobacter crescentus/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Metais Terras Raras/metabolismo , Adsorção , Caulobacter crescentus/genética , Ácido Cítrico/química , Engenharia Genética/métodos , Metais Terras Raras/isolamento & purificação , Mineração/métodos , Térbio/metabolismo
6.
Environ Sci Technol ; 49(16): 9460-8, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26132866

RESUMO

Increasing rare earth element (REE) supplies by recycling and expanded ore processing will result in generation of new wastewaters. In some cases, disposal to a sewage treatment plant may be favored, but plant performance must be maintained. To assess the potential effects of such wastewaters on biological treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50, and 100 ppm), and the extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions at 50 and 100 ppm inhibited N. europaea, even when virtually all of the REE was insoluble. Provision of TBP with Eu increased N. europaea inhibition, although TBP alone did not substantially alter activity. For N. winogradskyi cultures, Eu or Y additions at all tested levels induced significant inhibition, and nitrification shut down completely with TBP addition. REE solubility was calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, typically controlled by the precipitation of REE hydroxides but also likely affected by the formation of unknown phosphate phases, which determined aqueous concentrations experienced by the microorganisms.


Assuntos
Metais Terras Raras/química , Nitrificação , Reciclagem , Águas Residuárias/química , Amônia/química , Concentração de Íons de Hidrogênio , Nitrificação/efeitos dos fármacos , Nitritos/farmacologia , Nitrobacter/efeitos dos fármacos , Nitrosomonas europaea/efeitos dos fármacos , Organofosfatos/farmacologia , Oxirredução/efeitos dos fármacos , Solubilidade , Soluções , Termodinâmica
7.
Environ Sci Technol ; 48(1): 542-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24289499

RESUMO

Ureolytically driven calcite precipitation is a promising approach for inducing subsurface mineral precipitation, but engineered application requires the ability to control and predict precipitate distribution. To study the coupling between reactant transport and precipitate distribution, columns with defined zones of immobilized urease were used to examine the distribution of calcium carbonate precipitation along the flow path, at two different initial flow rates. As expected, with slower flow precipitate was concentrated toward the upstream end of the enzyme zone and with higher flow the solid was more uniformly distributed over the enzyme zone. Under constant hydraulic head conditions the flow rate decreased as precipitates decreased porosity and permeability. The hydrolysis/precipitation zone was expected to become compressed in the upstream direction. However, apparent reductions in the urea hydrolysis rate and changes in the distribution of enzyme activity, possibly due to CaCO3 precipitate hindering urea transport to the enzyme, or enzyme mobilization, mitigated reaction zone compression. Co-injected strontium was expected to be sequestered by coprecipitation with CaCO3, but the results suggested that coprecipitation was not an effective sequestration mechanism in this system. In addition, spectral induced polarization (SIP) was used to monitor the spatial and temporal evolution of the reaction zone.


Assuntos
Carbonato de Cálcio/química , Precipitação Química , Estrôncio/isolamento & purificação , Fenômenos Químicos , Recuperação e Remediação Ambiental , Hidrólise , Permeabilidade , Porosidade , Propriedades de Superfície , Ureia/química , Urease/química
8.
Water Environ Res ; 86(4): 324-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24851328

RESUMO

Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bio-electrochemical reactions mediated by microorganisms. This study investigated the diversity of the microbial community in an air cathode single chamber MFC that used potato-process wastewater as substrate. Terminal restriction fragment length polymorphism results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S ribosomal DNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopy results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that use potato wastewater.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biota , Conservação de Recursos Energéticos , Solanum tuberosum/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Bactérias/genética , Fontes de Energia Bioelétrica/microbiologia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/análise , Análise de Sequência de DNA
9.
Arterioscler Thromb Vasc Biol ; 32(2): 257-63, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22173225

RESUMO

OBJECTIVE: We previously showed that aldosterone induces insulin resistance in rat vascular smooth muscle cells (VSMCs). Because insulin-like growth factor-1 receptor (IGF1R) affects insulin signaling, we hypothesized that aldosterone induces vascular insulin resistance and remodeling via upregulation of IGF1R and its hybrid insulin/insulin-like growth factor-1 receptor. METHODS AND RESULTS: Hybrid receptor expression was measured by immunoprecipitation. Hypertrophy of VSMCs was evaluated by (3)H-labeled leucine incorporation. Aldosterone (10 nmol/L) significantly increased protein and mRNA expression of IGF1R and hybrid receptor in VSMCs but did not affect insulin receptor expression. Mineralocorticoid receptor blockade with eplerenone inhibited aldosterone-induced increases in IGF1R and hybrid receptor. Aldosterone augmented insulin (100 nmol/L)-induced extracellular signal-regulated kinase 1/2 phosphorylation. Insulin-induced leucine incorporation and α-smooth muscle actin expression were also augmented by aldosterone in VSMCs. These aldosterone-induced changes were significantly attenuated by eplerenone or picropodophyllin, an IGF1R inhibitor. Chronic infusion of aldosterone (0.75 µg/hour) increased blood pressure and aggravated glucose metabolism in rats. Expression of hybrid receptor, azan-positive area, and oxidative stress in aorta was increased in aldosterone-infused rats. Spironolactone and tempol prevented these aldosterone-induced changes. CONCLUSIONS: Aldosterone induces vascular remodeling through IGF1R- and hybrid receptor-dependent vascular insulin resistance. Mineralocorticoid receptor blockade may attenuate angiopathy in hypertensive patients with hyperinsulinemia.


Assuntos
Aldosterona/farmacologia , Resistência à Insulina , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Quimera/genética , Eplerenona , Glucose/metabolismo , Hipertrofia , Insulina/farmacologia , Masculino , Modelos Animais , Músculo Liso Vascular/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Espironolactona/análogos & derivados , Espironolactona/farmacologia , Regulação para Cima/efeitos dos fármacos
10.
Arthritis Rheum ; 64(4): 1024-34, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22076918

RESUMO

OBJECTIVE: To determine whether lectin-like oxidized low-density lipoprotein (ox-LDL) receptor 1 (LOX-1) and the soluble form of LOX-1 (sLOX-1) are novel target molecules for the diagnosis and treatment of rheumatoid arthritis (RA). METHODS: Expression of ox-LDL and LOX-1 proteins in human RA synovium was evaluated by immunohistochemistry. Human RA fibroblast-like synoviocytes (FLS) were assessed for ox-LDL-induced expression of LOX-1 and ox-LDL-induced production of matrix metalloproteinase 1 (MMP-1) and MMP-3. Levels of sLOX-1 in the plasma and synovial fluid of patients with RA, compared with patients with osteoarthritis (OA), were determined by a specific chemiluminescence enzyme-linked immunoassay. In animal experiments, ox-LDL was injected into the knee joints of mice, with or without an anti-LOX-1 neutralizing antibody or sLOX-1, and the severity of arthritis was analyzed by histology and immunohistochemistry. RESULTS: Oxidized LDL and LOX-1 proteins were detected in the RA synovial tissue. Levels of MMP-1 and MMP-3 were enhanced by stimulation of RA FLS with ox-LDL, and the production of both MMPs was inhibited by blockade of the ox-LDL-LOX-1 interaction with the anti-LOX-1 neutralizing antibody or sLOX-1. Levels of sLOX-1 in the plasma and synovial fluid of RA patients were significantly higher than those in OA patients and healthy controls and were positively correlated with inflammation markers and the extent of RA disease activity. In the knees of mice, blockade of the ox-LDL-LOX-1 interaction suppressed arthritic changes and reduced the expression of MMP-3 induced by ox-LDL. CONCLUSION: These findings strongly indicate that sLOX-1 is a novel biomarker that may be useful for the diagnosis of RA and for the evaluation of disease activity in RA. Furthermore, the results suggest that LOX-1 may be a potent therapeutic target for RA.


Assuntos
Artrite Reumatoide/diagnóstico , Osteoartrite/diagnóstico , Receptores Depuradores Classe E/metabolismo , Líquido Sinovial/metabolismo , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Diagnóstico Diferencial , Humanos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Metaloproteinase 3 da Matriz/biossíntese , Camundongos , Osteoartrite/metabolismo , Osteoartrite/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
11.
Curr Opin Lipidol ; 23(5): 439-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22777292

RESUMO

PURPOSE OF REVIEW: LOX-1 is a multiligand receptor implicated in endothelial dysfunction and atherosclerosis, although it was originally identified as an oxidized LDL receptor. In this review, the roles of various LOX-1 ligands and their interaction with LOX-1 are discussed to understand the pathophysiological significance of LOX-1. RECENT FINDINGS: LOX-1 knockout mice showed resistance of endothelium-dependent vasorelaxation against oxidized LDL and retardation of atherosclerosis progression. LOX-1 ligand reduction in mice also attenuated atherosclerosis progression. In a human cohort study, high concentration of apoB-containing LOX-1 ligands predicted the incidence of cardiovascular disease. Furthermore, modified HDL, which existed in high concentration in the plasma of coronary artery disease patients, was found to induce impairment of endothelial nitric oxide release via LOX-1. In addition to lipoproteins, LOX-1 was found to work as a C-reactive protein receptor providing a scaffold for the activation of the complement system. SUMMARY: LOX-1 is a unique molecule among the sensors of danger signals. LOX-1 is not only sensing danger signals such as modified LDL and heat shock protein, but also scaffolding other danger sensors including C-reactive protein and C1q, and directly commanding responses to danger signals by working as a cell adhesion molecule. Via these functions, LOX-1 might work as a surveillance molecule of vascular homeostasis.


Assuntos
Arteriosclerose/fisiopatologia , Receptores Depuradores Classe E/metabolismo , Transdução de Sinais , Animais , Apolipoproteínas B/metabolismo , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Ativação do Complemento , Progressão da Doença , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Humanos , Ligantes , Camundongos , Camundongos Knockout , Receptores de LDL Oxidado/metabolismo
12.
Geochem Trans ; 13(1): 1, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22280318

RESUMO

BACKGROUND: A proposed strategy for immobilizing trace metals in the subsurface is to stimulate calcium carbonate precipitation and incorporate contaminants by co-precipitation. Such an approach will require injecting chemical amendments into the subsurface to generate supersaturated conditions that promote mineral precipitation. However, the formation of reactant mixing zones will create gradients in both the saturation state and ion activity ratios (i.e., aCO32-/aCa2+). To better understand the effect of ion activity ratios on CaCO3 precipitation kinetics and Sr2+ co-precipitation, experiments were conducted under constant composition conditions where the supersaturation state (Ω) for calcite was held constant at 9.4, but the ion activity ratio (r=aCO32-/aCa2+) was varied between 0.0032 and 4.15. RESULTS: Calcite was the only phase observed, by XRD, at the end of the experiments. Precipitation rates increased from 41.3 ± 3.4 µmol m-2 min-1 at r = 0.0315 to a maximum rate of 74.5 ± 4.8 µmol m-2 min-1 at r = 0.306 followed by a decrease to 46.3 ± 9.6 µmol m-2 min-1 at r = 1.822. The trend was simulated using a simple mass transfer model for solute uptake at the calcite surface. However, precipitation rates at fixed saturation states also evolved with time. Precipitation rates accelerated for low r values but slowed for high r values. These trends may be related to changes in effective reactive surface area. The aCO32-/aCa2+ ratios did not affect the distribution coefficient for Sr in calcite (DPSr2+), apart from the indirect effect associated with the established positive correlation between DPSr2+ and calcite precipitation rate. CONCLUSION: At a constant supersaturation state (Ω = 9.4), varying the ion activity ratio affects the calcite precipitation rate. This behavior is not predicted by affinity-based rate models. Furthermore, at the highest ion ratio tested, no precipitation was observed, while at the lowest ion ratio precipitation occurred immediately and valid rate measurements could not be made. The maximum measured precipitation rate was 2-fold greater than the minima, and occurred at a carbonate to calcium ion activity ratio of 0.306. These findings have implications for predicting the progress and cost of remediation operations involving enhanced calcite precipitation where mineral precipitation rates, and the spatial/temporal distribution of those rates, can have significant impacts on the mobility of contaminants.

13.
Environ Sci Technol ; 46(8): 4357-64, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22420512

RESUMO

The spectral induced polarization (SIP) technique is a promising approach for delineating subsurface physical and chemical property changes in a minimally invasive manner. To facilitate the understanding of position and chemical properties of reaction fronts that involve mineral precipitation in porous media, we investigated spatiotemporal variations in complex conductivity during evolution of urea hydrolysis and calcite precipitation reaction fronts within a silica gel column. The real and imaginary parts of complex conductivity were shown to be sensitive to changes in both solution chemistry and calcium carbonate precipitation. Distinct changes in imaginary conductivity coincided with increased hydroxide ion concentration during urea hydrolysis. In a separate experiment focused on the effect of hydroxide concentration on interfacial polarization of silica gel and well-sorted sand, we found a significant dependence of the polarization response on pH changes of the solution. We propose a conceptual model describing hydroxide ion adsorption behavior in silica gel and its control on interfacial polarizability. Our results demonstrate the utility of SIP for noninvasive monitoring of reaction fronts, and indicate its potential for quantifying geochemical processes that control the polarization responses of porous media at larger spatial scales in the natural environment.


Assuntos
Carbonato de Cálcio/química , Hidróxidos/química , Adsorção , Precipitação Química , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Porosidade , Sílica Gel/química , Ureia/química , Urease/química
14.
Microbiol Resour Announc ; 11(2): e0108921, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35112906

RESUMO

We report the complete genome sequence of Acidithiobacillus ferriphilus GT2, an acidophile isolated from gold mill tailings. The circular genome of GT2 contains 2,489 predicted protein-coding units and a single plasmid. Functional analysis indicates the metabolic potential to oxidize iron and reduced sulfur compounds and to fix N2 and CO2.

15.
Clin Chem ; 57(10): 1398-405, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821723

RESUMO

BACKGROUND: C-reactive protein (CRP) is purported to be a risk factor that acts independently of LDL cholesterol in predicting all-cause mortality in patients with ischemic heart disease. Lectin-like oxidized LDL receptor 1 (LOX-1) impairs endothelial function and exacerbates myocardial injury. We recently demonstrated that CRP increased vascular permeability through direct binding to LOX-1. Here we examined, using a hypertensive rat model, whether LOX-1 is involved in CRP-induced complement activation. METHODS AND RESULTS: In the cultured LOX-1-expressing cell line hLOX-1-CHO, CRP increased complement activation, but did not do so in native CHO cells. Depleting C1q from serum abolished CRP-induced complement activation. Incubation of CRP with serum on immobilized recombinant LOX-1 similarly showed that CRP activated C1q-requiring classical complement pathway in a LOX-1-dependent manner. Interestingly, the interaction between CRP and LOX-1 was dependent on Ca²âº ion and competed with phosphocholine, suggesting that LOX-1 bound to the B-face of CRP with a phosphocholine-binding domain. This was in contrast to Fcγ receptors, to which CRP bound in A-face with complement-binding domain. In vivo, intradermal injection of CRP to hypertensive SHRSP rats induced complement activation detected by C3d deposition and leukocyte infiltration around the injected area. Anti-LOX-1 antibody reduced the extent of complement activation and leukocyte infiltration. CONCLUSIONS: LOX-1 appears to be involved in CRP-induced complement activation, and thus may serve to locate the site of CRP-induced complement activation and inflammation.


Assuntos
Proteína C-Reativa/fisiologia , Ativação do Complemento , Receptores Depuradores Classe E/fisiologia , Animais , Anticorpos/farmacologia , Proteína C-Reativa/farmacologia , Células CHO , Sistema Livre de Células , Complemento C1q/metabolismo , Complemento C3d/metabolismo , Cricetinae , Cricetulus , Humanos , Proteínas Imobilizadas , Masculino , Infiltração de Neutrófilos , Fosforilcolina/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Proteínas Recombinantes/farmacologia , Receptores Depuradores Classe E/imunologia , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/imunologia
16.
Geochem Trans ; 12(1): 8, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22029908

RESUMO

BACKGROUND: Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for phosphate mineral precipitation rely on stimulation of native microbial populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 mL-1) added to the precipitation medium. In addition, we tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). RESULTS: The general progression of mineral precipitation was similar under all of the study conditions, with initial formation of amorphous calcium phosphate, and transformation to poorly crystalline hydroxylapatite (HAP) within one week. The presence of the bacterial cells appeared to delay precipitation, although by the end of the experiments the overall extent of precipitation was similar for all treatments. The stoichiometry of the final precipitates as well as Rietveld structure refinement using x-ray diffraction data indicated that the presence of organic acids and bacterial cells resulted in an increasing a and decreasing c lattice parameter, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the solids was decreased in the treatments with cells and organic acids, compared to the control. CONCLUSIONS: Our results suggest that the minerals formed initially during an engineered precipitation application for trace element sequestration may not be the ones that control long-term immobilization of the contaminants. In addition, the presence of bacterial cells appears to be associated with delayed HAP precipitation, changes in the lattice parameters, and reduced incorporation of trace elements as compared to cell-free systems. Schemes to remediate groundwater contaminated with trace metals that are based on enhanced phosphate mineral precipitation may need to account for these phenomena, particularly if the remediation approach relies on enhancement of in situ microbial populations.

17.
Geochem Trans ; 12(1): 7, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21943229

RESUMO

Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

18.
Cardiovasc Drugs Ther ; 25(5): 379-91, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21805404

RESUMO

LOX-1 is an endothelial receptor for oxidized low-density lipoprotein (oxLDL), a key molecule in the pathogenesis of atherosclerosis.The basal expression of LOX-1 is low but highly induced under the influence of proinflammatory and prooxidative stimuli in vascular endothelial cells, smooth muscle cells, macrophages, platelets and cardiomyocytes. Multiple lines of in vitro and in vivo studies have provided compelling evidence that LOX-1 promotes endothelial dysfunction and atherogenesis induced by oxLDL. The roles of LOX-1 in the development of atherosclerosis, however, are not simple as it had been considered. Evidence has been accumulating that LOX-1 recognizes not only oxLDL but other atherogenic lipoproteins, platelets, leukocytes and CRP. As results, LOX-1 not only mediates endothelial dysfunction but contributes to atherosclerotic plaque formation, thrombogenesis, leukocyte infiltration and myocardial infarction, which determine mortality and morbidity from atherosclerosis. Moreover, our recent epidemiological study has highlighted the involvement of LOX-1 in human cardiovascular diseases. Further understandings of LOX-1 and its ligands as well as its versatile functions will direct us to ways to find novel diagnostic and therapeutic approaches to cardiovascular disease.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Endotélio Vascular/metabolismo , Lipoproteínas LDL/metabolismo , Receptores Depuradores Classe E/metabolismo , Animais , Humanos , Ligantes
19.
Artigo em Inglês | MEDLINE | ID: mdl-21422743

RESUMO

Lectin-like oxidized LDL receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL (oxLDL) and plays multiple roles in the development of cardiovascular diseases. We screened more than 400 foodstuff extracts for identifying materials that inhibit oxLDL binding to LOX-1. Results showed that 52 extracts inhibited LOX-1 by more than 70% in cell-free assays. Subsequent cell-based assays revealed that a variety of foodstuffs known to be rich in procyanidins such as grape seed extracts and apple polyphenols, potently inhibited oxLDL uptake in Chinese hamster ovary (CHO) cells expressing LOX-1. Indeed, purified procyanidins significantly inhibited oxLDL binding to LOX-1 while other ingredients of apple polyphenols did not. Moreover, chronic administration of oligomeric procyanidins suppressed lipid accumulation in vascular wall in hypertensive rats fed with high fat diet. These results suggest that procyanidins are LOX-1 inhibitors and LOX-1 inhibition might be a possible underlying mechanism of the well-known vascular protective effects of red wine, the French Paradox.


Assuntos
Biflavonoides/farmacologia , Catequina/farmacologia , Modelos Biológicos , Proantocianidinas/farmacologia , Receptores Depuradores Classe E/antagonistas & inibidores , Vinho , Animais , Biflavonoides/química , Biflavonoides/isolamento & purificação , Células CHO , Catequina/química , Catequina/isolamento & purificação , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , França , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Malus/química , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Polimerização , Polifenóis , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Ratos , Receptores Depuradores Classe E/metabolismo
20.
Oncol Rep ; 45(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649776

RESUMO

The precise mechanism of intercellular communication between cancer cells following radiation exposure is unclear. Exosomes are membrane­enclosed small vesicles comprising lipid bilayers and are mediators of intercellular communication that transport a variety of intracellular components, including microRNAs (miRNAs or miRs). The present study aimed to identify novel roles of exosomes released from irradiated cells to neighboring cancer cells. In order to confirm the presence of exosomes in the human pancreatic cancer cell line MIAPaCa­2, ultracentrifugation was performed followed by transmission electron microscopy and nanoparticle tracking analysis (NanoSight) using the exosome­specific surface markers CD9 and CD63. Subsequent endocytosis of exosomes was confirmed by fluorescent microscopy. Cell survival following irradiation and the addition of exosomes was evaluated by colony forming assay. Expression levels of miRNAs in exosomes were then quantified by microarray analysis, while protein expression levels of Cu/Zn­ and Mn­superoxide dismutase (SOD1 and 2, respectively) enzymes in MIAPaCa­2 cells were evaluated by western blotting. Results showed that the uptake of irradiated exosomes was significantly higher than that of non­irradiated exosomes. Notably, irradiated exosomes induced higher intracellular levels of reactive oxygen species (ROS) and a higher frequency of DNA damage in MIAPaCa­2 cells, as determined by fluorescent microscopy and immunocytochemistry, respectively. Moreover, six up­ and five downregulated miRNAs were identified in 5 and 8 Gy­irradiated cells using miRNA microarray analyses. Further analysis using miRNA mimics and reverse transcription­quantitative PCR identified miR­6823­5p as a potential candidate to inhibit SOD1, leading to increased intracellular ROS levels and DNA damage. To the best of our knowledge, the present study is the first to demonstrate that irradiated exosomes enhance the radiation effect via increasing intracellular ROS levels in cancer cells. This contributes to improved understanding of the bystander effect of neighboring cancer cells.


Assuntos
Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Comunicação Celular/fisiologia , Comunicação Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Dano ao DNA , Exossomos/genética , Exossomos/metabolismo , Exossomos/efeitos da radiação , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Tolerância a Radiação , Superóxido Dismutase-1/biossíntese , Superóxido Dismutase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA