Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(29): e2214320120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428918

RESUMO

Integrating antigen-encoding mRNA (Messenger RNA) and immunostimulatory adjuvant into a single formulation is a promising approach to potentiating the efficacy of mRNA vaccines. Here, we developed a scheme based on RNA engineering to integrate adjuvancy directly into antigen-encoding mRNA strands without hampering the ability to express antigen proteins. Short double-stranded RNA (dsRNA) was designed to target retinoic acid-inducible gene-I (RIG-I), an innate immune receptor, for effective cancer vaccination and then tethered onto the mRNA strand via hybridization. Tuning the dsRNA structure and microenvironment by changing its length and sequence enabled the determination of the structure of dsRNA-tethered mRNA efficiently stimulating RIG-I. Eventually, the formulation loaded with dsRNA-tethered mRNA of the optimal structure effectively activated mouse and human dendritic cells and drove them to secrete a broad spectrum of proinflammatory cytokines without increasing the secretion of anti-inflammatory cytokines. Notably, the immunostimulating intensity was tunable by modulating the number of dsRNA along the mRNA strand, which prevents excessive immunostimulation. Versatility in the applicable formulation is a practical advantage of the dsRNA-tethered mRNA. Its formulation with three existing systems, i.e., anionic lipoplex, ionizable lipid-based lipid nanoparticles, and polyplex micelles, induced appreciable cellular immunity in the mice model. Of particular interest, dsRNA-tethered mRNA encoding ovalbumin (OVA) formulated in anionic lipoplex used in clinical trials exerted a significant therapeutic effect in the mouse lymphoma (E.G7-OVA) model. In conclusion, the system developed here provides a simple and robust platform to supply the desired intensity of immunostimulation in various formulations of mRNA cancer vaccines.


Assuntos
Neoplasias , RNA de Cadeia Dupla , Humanos , Animais , Camundongos , RNA de Cadeia Dupla/genética , Adjuvantes Imunológicos/farmacologia , Antígenos , Imunidade Celular , Citocinas/genética , RNA Mensageiro/genética , Camundongos Endogâmicos C57BL , Neoplasias/terapia
2.
Biomacromolecules ; 23(1): 388-397, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34935361

RESUMO

To stabilize small interfering RNA (siRNA) in the bloodstream for systemic RNAi therapeutics, we previously fabricated ultrasmall siRNA nanocarriers that were sub-20 nm in hydrodynamic diameter, named as unit polyion complexes (uPICs), using two-branched poly(ethylene glycol)-b-poly(l-lysine) (bPEG-PLys). The blood retention time of uPICs is dramatically increased in the presence of free bPEG-PLys, suggesting dynamic stabilization of uPICs by free bPEG-PLys based on their equilibrium. Herein, we examined how the degree of polymerization of PLys (DPPLys) affected the dynamic stability of uPICs in the bloodstream during prolonged circulation. We prepared a series of bPEG-PLys with DPPLys values of 10, 13, 20, 40, and 80 for the uPIC formation and siRNA with 40 negative charges. These bPEG-PLys were then evaluated in physicochemical characterization and pharmacokinetic analyses. Structural analyses revealed that the uPIC size and association numbers were mainly determined by the molecular weights of PEG and DPPLys, respectively. Under bPEG-PLys-rich conditions, the hydrodynamic diameters of uPICs were 15-20 nm, which were comparable to that of the bPEG block (i.e., ∼18 nm). Importantly, DPPLys significantly affected the association constant of bPEG-PLys to siRNA (Ka) and blood retention of free bPEG-PLys. A smaller DPPLys resulted in a lower Ka and a longer blood retention time of free bPEG-PLys. Thus, DPPLys can control the dynamic stability of uPICs, i.e., the balance between Ka and blood concentration of free bPEG-PLys. Ultimately, the bPEG-PLys with DPPLys values of 14 and 19 prolonged the blood circulation of siRNA-loaded uPICs with relatively small amounts of free bPEG-PLys. This study revealed that the uPIC formation between siRNA and bPEG-PLys can be controlled by their charges, which may be helpful for designing PIC-based delivery systems.


Assuntos
Lisina , Polietilenoglicóis , Cátions , Lisina/análogos & derivados , Polietilenoglicóis/química , RNA Interferente Pequeno/química
3.
Macromol Rapid Commun ; 43(12): e2100754, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35286740

RESUMO

For efficient delivery of messenger (m)RNA, delivery carriers need two major functions: protecting mRNA from nucleases and translocating mRNA from endolysosomes to the cytoplasm. Herein, these two complementary functionalities are integrated into a single polyplex by fine-tuning the catiomer chemical structure and incorporating the endosomal escape modality. The effect of the methylene spacer length on the catiomer side chain is evaluated by comparing poly(l-lysine) (PLL) with a tetramethylene spacer and poly(L-ornithine) (PLO) with a trimethylene spacer. Noteworthily, the nuclease stability of the mRNA/catiomer polyplexes is largely affected by the difference in one methylene group, with PLO/mRNA polyplex showing enhanced stability compared to PLL/mRNA polyplex. To introduce the endosomal escape function, the PLO/mRNA polyplex is wrapped with a charge-conversion polymer (CCP), which is negatively charged at extracellular pH but turns positive at endosomal acidic pH to disrupt the endosomal membrane. Compared to the parent PLO/mRNA polyplex, CCP facilitated the endosomal escape of the polyplex in cultured cells to improve the protein expression efficiency from mRNA by approximately 80-fold. Collectively, this system synergizes the protective effect of PLO against nucleases and the endosomal escape capability of CCP in mRNA delivery.


Assuntos
Endossomos , Polímeros , Endossomos/química , Endossomos/metabolismo , Ornitina/análise , Ornitina/metabolismo , Polímeros/química , RNA Mensageiro , Transfecção
4.
Angew Chem Int Ed Engl ; 59(21): 8173-8180, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31995252

RESUMO

Current antisense oligonucleotide (ASO) therapies for the treatment of central nervous system (CNS) disorders are performed through invasive administration, thereby placing a major burden on patients. To alleviate this burden, we herein report systemic ASO delivery to the brain by crossing the blood-brain barrier using glycemic control as an external trigger. Glucose-coated polymeric nanocarriers, which can be bound by glucose transporter-1 expressed on the brain capillary endothelial cells, are designed for stable encapsulation of ASOs, with a particle size of about 45 nm and an adequate glucose-ligand density. The optimized nanocarrier efficiently accumulates in the brain tissue 1 h after intravenous administration and exhibits significant knockdown of a target long non-coding RNA in various brain regions, including the cerebral cortex and hippocampus. These results demonstrate that the glucose-modified polymeric nanocarriers enable noninvasive ASO administration to the brain for the treatment of CNS disorders.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Glucose/química , Nanoestruturas/química , Oligonucleotídeos Antissenso/química , Polímeros/química , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Corantes Fluorescentes/química , Humanos , Camundongos , Oligonucleotídeos Antissenso/metabolismo , Tamanho da Partícula , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Macromol Rapid Commun ; 37(6): 486-93, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26765970

RESUMO

Polyion complexes (b-PICs) are prepared by mixing single- or double-stranded oligo RNA (aniomer) with poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) (block catiomer) to clarify the effect of aniomer chain rigidity on association behaviors at varying concentrations. Here, a 21-mer single-stranded RNA (ssRNA) (persistence length: 1.0 nm) and a 21-mer double-stranded RNA (small interfering RNA, siRNA) (persistence length: 62 nm) are compared. Both oligo RNAs form a minimal charge-neutralized ionomer pair with a single PEG-PLL chain, termed unit b-PIC (uPIC), at low concentrations (<≈ 0.01 mg mL(-1)). Above the critical association concentration (≈ 0.01 mg mL(-1)), ssRNA b-PICs form secondary associates, PIC micelles, with sizes up to 30-70 nm, while no such multimolecular assembly is observed for siRNA b-PICs. The entropy gain associated with the formation of a segregated PIC phase in the multimolecular PIC micelles may not be large enough for rigid siRNA strands to compensate with appreciably high steric repulsion derived from PEG chains. Chain rigidity appears to be a critical parameter in polyion complex association.


Assuntos
Lisina/análogos & derivados , Polietilenoglicóis/química , RNA de Cadeia Dupla/química , RNA Interferente Pequeno/química , Entropia , Concentração de Íons de Hidrogênio , Lisina/química , Micelas , Eletricidade Estática
6.
Angew Chem Int Ed Engl ; 55(2): 560-5, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26629778

RESUMO

The design and construction of nanoreactors are important for biomedical applications of enzymes, but lipid- and polymeric-vesicle-based nanoreactors have some practical limitations. We have succeeded in preparing enzyme-loaded polyion complex vesicles (PICsomes) through a facile protein-loading method. The preservation of enzyme activity was confirmed even after cross-linking of the PICsomes. The cross-linked ß-galactosidase-loaded PICsomes (ß-gal@PICsomes) selectively accumulated in the tumor tissue of mice. Moreover, a model prodrug, HMDER-ßGal, was successfully converted into a highly fluorescent product, HMDER, at the tumor site, even 4 days after administration of the ß-gal@PICsomes. Intravital confocal microscopy showed continuous production of HMDER and its distribution throughout the tumor tissues. Thus, enzyme-loaded PICsomes are useful for prodrug activation at the tumor site and could be a versatile platform for enzyme delivery in enzyme prodrug therapy.


Assuntos
Reatores Biológicos , Enzimas/administração & dosagem , Nanotecnologia , Neoplasias Experimentais/metabolismo , Animais , Cromatografia em Gel , Camundongos , Microscopia Eletrônica de Transmissão
7.
Polymers (Basel) ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36987149

RESUMO

Mesoscopic-sized polyion complex vesicles (PICsomes) with semi-permeable membranes are promising nanoreactors for enzyme prodrug therapy (EPT), mainly due to their ability to accommodate enzymes in their inner cavity. Increased loading efficacy and retained activity of enzymes in PICsomes are crucial for their practical application. Herein, a novel preparation method for enzyme-loaded PICsomes, the stepwise crosslinking (SWCL) method, was developed to achieve both high feed-to-loading enzyme efficiency and high enzymatic activity under in vivo conditions. Cytosine deaminase (CD), which catalyzes the conversion of the 5-fluorocytosine (5-FC) prodrug to cytotoxic 5-fluorouracil (5-FU), was loaded into PICsomes. The SWCL strategy enabled a substantial increase in CD encapsulation efficiency, up to ~44% of the feeding amount. CD-loaded PICsomes (CD@PICsomes) showed prolonged blood circulation to achieve appreciable tumor accumulation via enhanced permeability and retention effect. The combination of CD@PICsomes and 5-FC produced superior antitumor activity in a subcutaneous model of C26 murine colon adenocarcinoma, even at a lower dose than systemic 5-FU treatment, and showed significantly reduced adverse effects. These results reveal the feasibility of PICsome-based EPT as a novel, highly efficient, and safe cancer treatment modality.

8.
Biomater Sci ; 11(7): 2336-2347, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36804651

RESUMO

Targeting brain lipid metabolism is a promising strategy to regulate the energy balance and fight metabolic diseases such as obesity. The development of stable platforms for selective delivery of drugs, particularly to the hypothalamus, is a challenge but a possible solution for these metabolic diseases. Attenuating fatty acid oxidation in the hypothalamus via CPT1A inhibition leads to satiety, but this target is difficult to reach in vivo with the current drugs. We propose using an advanced crosslinked polymeric micelle-type nanomedicine that can stably load the CPT1A inhibitor C75-CoA for in vivo control of the energy balance. Central administration of the nanomedicine induced a rapid attenuation of food intake and body weight in mice via regulation of appetite-related neuropeptides and neuronal activation of specific hypothalamic regions driving changes in the liver and adipose tissue. This nanomedicine targeting brain lipid metabolism was successful in the modulation of food intake and peripheral metabolism in mice.


Assuntos
Metabolismo dos Lipídeos , Nanomedicina , Camundongos , Animais , Metabolismo Energético , Obesidade/metabolismo , Hipotálamo/metabolismo
9.
Nat Commun ; 13(1): 7165, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418896

RESUMO

Nano-immunotherapy improves breast cancer outcomes but not all patients respond and none are cured. To improve efficacy, research focuses on drugs that reprogram cancer-associated fibroblasts (CAFs) to improve therapeutic delivery and immunostimulation. These drugs, however, have a narrow therapeutic window and cause adverse effects. Developing strategies that increase CAF-reprogramming while limiting adverse effects is urgent. Here, taking advantage of the CAF-reprogramming capabilities of tranilast, we developed tranilast-loaded micelles. Strikingly, a 100-fold reduced dose of tranilast-micelles induces superior reprogramming compared to free drug owing to enhanced intratumoral accumulation and cancer-associated fibroblast uptake. Combination of tranilast-micelles and epirubicin-micelles or Doxil with immunotherapy increases T-cell infiltration, resulting in cures and immunological memory in mice bearing immunotherapy-resistant breast cancer. Furthermore, shear wave elastography (SWE) is able to monitor reduced tumor stiffness caused by tranilast-micelles and predict response to nano-immunotherapy. Micellar encapsulation is a promising strategy for TME-reprogramming and SWE is a potential biomarker of response.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Camundongos , Animais , Micelas , Microambiente Tumoral , Imunoterapia , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/uso terapêutico , Fatores Imunológicos , Polímeros
10.
Biomacromolecules ; 12(9): 3174-85, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21863796

RESUMO

Small interfering RNA (siRNA) has great therapeutic potential for the suppression of proteins associated with disease, but delivery methods are needed for improved efficacy. Here, we investigated the properties of micellar siRNA delivery vehicles prepared with poly(ethylene glycol)-block-poly(l-lysine) (PEG-b-PLL) comprising lysine amines modified to contain amidine and thiol functionality. Lysine modification was achieved using 2-iminothiolane (2-IT) [yielding PEG-b-PLL(N2IM-IM)] or dimethyl 3,3'-dithiobispropionimidate (DTBP) [yielding PEG-b-PLL(MPA)], with modifications aimed to impart disulfide cross-linking ability without compromising cationic charge. These two lysine modification reagents resulted in vastly different chemistry contained in the reacted block copolymer, which affected micelle formation behavior and stability along with in vitro and in vivo performance. Amidines formed with 2-IT were unstable and rearranged into a noncharged ring structure lacking free thiol functionality, whereas amidines generated with DTBP were stable. Micelles formed with siRNA and PEG-b-PLL(N2IM-IM) at higher molar ratios of polymer/siRNA, while PEG-b-PLL(MPA) produced micelles only near stoichiometric molar ratios. In vitro gene silencing was highest for PEG-b-PLL(MPA)/siRNA micelles, which were also more sensitive to disruption under disulfide-reducing conditions. Blood circulation was most improved for PEG-b-PLL(N2IM-IM)/siRNA micelles, with a circulation half-life 3× longer than naked siRNA. Both micelle formulations are promising for siRNA delivery applications in vitro and in vivo.


Assuntos
Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Luciferases/antagonistas & inibidores , Lisina/análogos & derivados , Polietilenoglicóis , RNA Interferente Pequeno , Amidinas/química , Animais , Cátions , Estabilidade de Medicamentos , Feminino , Inativação Gênica/efeitos dos fármacos , Genes Reporter , Meia-Vida , Luciferases/genética , Luciferases/metabolismo , Lisina/síntese química , Lisina/química , Lisina/metabolismo , Lisina/farmacocinética , Espectroscopia de Ressonância Magnética , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Camundongos Nus , Micelas , Microscopia de Vídeo , Polietilenoglicóis/síntese química , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacocinética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacocinética , Compostos de Sulfidrila/química , Células Tumorais Cultivadas
11.
J Control Release ; 330: 812-820, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33417983

RESUMO

Downsizing nanocarriers is a promising strategy for systemically targeting fibrotic cancers, such as pancreatic cancer, owing to enhanced tissue permeability. We recently developed a small oligonucleotide nanocarrier called a unit polyion complex (uPIC) using a single oligonucleotide molecule and one or two molecule(s) of two-branched poly(ethylene glycol)-b-poly(l-lysine) (bPEG-PLys). The uPIC is a dynamic polyion-pair equilibrated with free bPEG-PLys, and thus, is highly stabilized in the presence of excess amounts of free bPEG-PLys in the bloodstream. However, the dynamic polyion-pairing behavior of uPICs needs to be further investigated for longevity in the bloodstream, especially under lower amounts of free bPEG-PLys. Herein, the polyion-pairing behavior of uPICs was investigated by highlighting oligonucleotide stability and negative charge number. To this end, small interfering RNA (siRNA) and antisense oligonucleotides (ASO) were chemically modified to acquire nuclease resistance, and the ASO was hybridized with complementary RNA (cRNA) to form a hetero-duplex oligonucleotide (HDO) with twice the negative charges. While all oligonucleotides similarly formed sub-20 nm-sized uPICs from a single oligonucleotide molecule, the association number of bPEG-PLys (ANbPEG-PLys) in uPICs varied based on the negative charge number of oligonucleotides (N-), that is, ANbPEG-PLys = ~2 at N- = ~40 (i.e., siRNA and HDO) and ANbPEG-PLys = ~1 at N- = 20 (i.e., ASO), presumably because of the balanced charge neutralization between the oligonucleotide and bPEG-PLys with a positive charge number (N+) of ~20. Ultimately, the uPICs prepared from the chemically modified oligonucleotide with higher negative charges showed considerably longer blood retention than those from the control oligonucleotides without chemical modifications or with lower negative charges. The difference in the blood circulation properties of uPICs was more pronounced under lower amounts of free bPEG-PLys. These results demonstrate that the chemical modification and higher negative charge in oligonucleotides facilitated the polyion-pairing between the oligonucleotide and bPEG-PLys under harsh biological conditions, facilitating enhanced blood circulation of uPICs.


Assuntos
Oligonucleotídeos , Polietilenoglicóis , Micelas , Polilisina , RNA Interferente Pequeno
12.
J Control Release ; 332: 260-268, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33647431

RESUMO

Genome editing using CRISPR/Cas9 has attracted considerable attention for the treatment of genetic disorders and viral infections. Co-delivery of Cas9 mRNA and single guide (sg)RNA is a promising strategy to efficiently edit the genome of various cell types, including non-dividing cells, with minimal safety concerns. However, co-delivery of two RNA species with significantly different sizes, such as Cas9 mRNA (4.5 kb) and sgRNA (0.1 kb), is still challenging, especially in vivo. Here, we addressed this issue by using a PEGylated polyplex micelle (PM) condensing the RNA in its core. PM loading sgRNA alone released sgRNA at minimal dilution in buffer, while PM loading Cas9 mRNA alone was stable even at higher dilutions. Interestingly, co-encapsulating sgRNA with Cas9 mRNA in a single PM prevented sgRNA release upon dilution, which led to the enhanced tolerability of sgRNA against enzymatic degradation. Subsequently, PM with co-encapsulated RNA widely induced genome editing in parenchymal cells in the mouse brain, including neurons, astrocytes, and microglia, following intraparenchymal injection, at higher efficiency than that by co-delivery of PMs loaded with either Cas9 mRNA or sgRNA separately. To the best of our knowledge, this is the first report demonstrating the utility of RNA-based delivery of CRISPR/Cas9 in inducing genome editing in the brain parenchymal cells. Furthermore, the efficiency of genome editing using PMs was higher than using a non-PEGylated polyplex, due to the enhanced diffusion of PMs in the brain tissue. The results reported herein demonstrate the potential of using PMs to co-encapsulate Cas9 mRNA and sgRNA for in vivo genome editing.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Animais , Encéfalo , Sistemas CRISPR-Cas , Camundongos , Micelas , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética
13.
Biomater Sci ; 9(21): 7076-7091, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34397074

RESUMO

Carnitine palmitoyltransferase 1A (CPT1A) is a central player in lipid metabolism, catalyzing the first step to fatty acid oxidation (FAO). Inhibiting CPT1A, especially in the brain, can have several pharmacological benefits, such as in treating obesity and brain cancer. C75-CoA is a strong competitive inhibitor of CPT1A. However, due to its negatively charged nature, it has low cellular permeability. Herein, we report the use of poly-ion complex (PIC) micelles to deliver the specific CPT1A inhibitors (±)-, (+)-, and (-)-C75-CoA into U87MG glioma cells and GT1-7 neurons. PIC micelles were formed through charge-neutralization of the cargo with the cationic side chain of PEG-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-PAsp(DET)), forming particles with 55 to 65 nm diameter. Upon short-term incubation with cells, the micelle-encapsulated CPT1A inhibitors resulted in up to 5-fold reduction of ATP synthesis compared to the free drug, without an apparent decline in cell viability. Micelle treatment showed a discernible decrease in 14C-palmitate oxidation into CO2 and acid-soluble metabolites, confirming that the substantial lowering of ATP production has resulted from FAO inhibition. Micelle treatment also diminished IC50 by 2 to 4-fold over the free drug-treated U87MG after long-term incubation. To measure the cellular uptake of these CoA-adduct loaded PIC micelles, we synthesized a fluorescent CoA derivative and prepared Fluor-CoA micelles which showed efficient internalization in the cell lines, both in 2D and 3D culture models, especially in neurons where uptake reached up to 3-fold over the free dye. Our results starkly demonstrate that the PIC micelles are a promising delivery platform for anionic inhibitors of CPT1A in glioma cells and neurons, laying the groundwork for future research or clinical applications.


Assuntos
Metabolismo dos Lipídeos , Micelas , Encéfalo , Coenzima A , Oxirredução , Polietilenoglicóis
14.
Polymers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375035

RESUMO

Self-assembled supramolecular structures based on polyion complex (PIC) formation between oppositely charged polymers are attracting much attention for developing drug delivery systems able to endure harsh in vivo environments. As controlling polymer complexation provides an opportunity for engineering the assemblies, an improved understanding of the PIC formation will allow constructing assemblies with enhanced structural and functional capabilities. Here, we focused on the influence of the mixing charge ratio between block aniomers and catiomers on the physicochemical characteristics and in vivo biological performance of the resulting PIC micelles (PIC/m). Our results showed that by changing the mixing charge ratio, the structural state of the core was altered despite the sizes of PIC/m remaining almost the same. These structural variations greatly affected the stability of the PIC/m in the bloodstream after intravenous injection and determined their biodistribution.

15.
Adv Healthc Mater ; 9(16): e2000538, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32583633

RESUMO

Messenger RNA (mRNA) shows high therapeutic potential, though effective delivery systems are still needed for boosting its application. Nanocarriers loading mRNA via polyion complexation with block catiomers into core-shell micellar structures are promising systems for enhancing mRNA delivery. Engineering the interaction between mRNA and catiomers through polymer design can promote the development of mRNA-loaded micelles (mRNA/m) with increased delivery efficiency. Particularly, the polycation chain rigidity may critically affect the mRNA-catiomer interplay to yield potent nanocarriers, yet its effect remains unknown. Herein, the influence of polycation stiffness on the performance of mRNA/m by developing block complementary catiomers having polycation segments with different flexibility, that is, poly(ethylene glycol)-poly(glycidylbutylamine) (PEG-PGBA) and PEG-poly(L-lysine) (PEG-PLL) is studied. PEG-PGBA allows more than 50-fold stronger binding to mRNA than the relatively more rigid PEG-PLL, resulting in mRNA/m with enhanced protection against enzymatic attack and polyanions. mRNA/m from PEG-PGBA significantly enhances mRNA in vivo bioavailability and increased protein translation, indicating the importance of controlling polycation flexibility for forming stable polyion complexes with mRNA toward improved delivery.


Assuntos
Micelas , Polímeros , Lisina , Polietilenoglicóis , RNA Mensageiro/genética
16.
ACS Appl Bio Mater ; 3(8): 5030-5039, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021680

RESUMO

Aberrant sialylation of cancer cells is emerging as an attractive method for generating effective antitumor strategies. However, as sialic acid (SA) is also present in healthy tissues, systems targeting SA in tumors must be strategically designed to be specifically activated in an intratumoral environment while avoiding systemic interaction. Phenylboronic acid (PBA) and its derivatives have shown potential for developing such smart ligands based on its triggered binding to SA at intratumoral pH. Because the affinity of PBAs against SA can be structurally controlled, the approach may further offer the possibility to enhance tumor targeting by molecularly engineering PBAs. Thus, to demonstrate that the modification of the chemical structure of PBAs can promote tumor targeting, we compared nanomedicines installed with the standard PBA or 5-boronopicolinic acid (5-BPA), which shows an exceptionally high binding affinity to SA in acidic pH. Platinum anticancer drugs were loaded into these nanomedicines and evaluated against orthotopic head and neck tumors, featuring a large fraction of SA-rich cancer stem-like cells (CSCs) that are resistant to platinum drugs. The 5-BPA ligands increased intracellular drug delivery of nanomedicines at intratumoral pH (pH 6.5) and enhanced the accumulation of nanomedicines in tumors to efficaciously eliminate the malignant CSCs, suppress tumor growth, and prolong mice survival. These findings indicate the potential of engineered PBA ligands for developing effective strategies targeting SA in tumors.

17.
Sci Adv ; 6(26): eabb8133, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637625

RESUMO

A major critical issue in systemically administered nanomedicines is nonspecific clearance by the liver sinusoidal endothelium, causing a substantial decrease in the delivery efficiency of nanomedicines into the target tissues. Here, we addressed this issue by in situ stealth coating of liver sinusoids using linear or two-armed poly(ethylene glycol) (PEG)-conjugated oligo(l-lysine) (OligoLys). PEG-OligoLys selectively attached to liver sinusoids for PEG coating, leaving the endothelium of other tissues uncoated and, thus, accessible to the nanomedicines. Furthermore, OligoLys having a two-armed PEG configuration was ultimately cleared from sinusoidal walls to the bile, while OligoLys with linear PEG persisted in the sinusoidal walls, possibly causing prolonged disturbance of liver physiological functions. Such transient and selective stealth coating of liver sinusoids by two-arm-PEG-OligoLys was effective in preventing the sinusoidal clearance of nonviral and viral gene vectors, representatives of synthetic and nature-derived nanomedicines, respectively, thereby boosting their gene transfection efficiency in the target tissues.


Assuntos
Nanomedicina , Polietilenoglicóis , Fígado
18.
ACS Nano ; 14(6): 6729-6742, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32431145

RESUMO

Delivering therapeutic antibodies into the brain across the blood-brain barrier at a therapeutic level is a promising while challenging approach in the treatment of neurological disorders. Here, we present a polymeric nanomicelle (PM) system capable of delivering therapeutically effective levels of 3D6 antibody fragments (3D6-Fab) into the brain parenchyma for inhibiting Aß aggregation. PM assembly was achieved by charge-converting 3D6-Fab through pH-sensitive citraconylation to allow complexation with reductive-sensitive cationic polymers. Brain targeting was achieved by functionalizing the PM surface with glucose molecules to allow interaction with recycling glucose transporter (Glut)-1 proteins. Consequently, 41-fold enhanced 3D6-Fab accumulation in the brain was achieved by using the PM system compared to free 3D6-Fab. Furthermore, therapeutic benefits were obtained by successfully inhibiting Aß1-42 aggregation in Alzheimer's disease mice systemically treated with 3D6-Fab-loaded glucosylated PM. Hence, this nanocarrier system represents a promising method for effectively delivering functional antibody agents into the brain and treating neurological diseases.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Camundongos , Camundongos Transgênicos
19.
J Drug Target ; 27(5-6): 670-680, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30499743

RESUMO

The major issues in messenger (m)RNA delivery are rapid mRNA degradation in the extracellular and intracellular spaces, which decreases the efficiency and duration for protein expression from mRNA. Stabilization of mRNA carriers using environment-responsive crosslinkings has promises to overcome these issues. Herein, we fine-tuned the structure of disulphide crosslinkings, which are selectively cleaved in the intracellular reductive environment, using the mRNA-loaded polyplex micelles (PMs) prepared from poly(ethylene glycol)-poly(L-lysine) (PEG-PLys) block copolymers, particularly by focussing on cationic charge density after the crosslinking. Primary amino groups in PLys segment were partially thiolated in two ways: One is to introduce 3-mercaptopropionyl (MP) groups via amide linkage, resulting in the decreased cationic charge density [PEG-PLys(MP)], and the other is the conversion of amino groups to 1-amidine-3-mercaptopropyl (AMP) groups with preserving cationic charge density [PEG-PLys(AMP)]. Compared to non-crosslinked and PEG-PLys(MP) PMs, PEG-PLys(AMP) PM attained tighter mRNA packaging in the PM core, thereby improving mRNA nuclease tolerability in serum and intracellular spaces, and providing enhanced protein expression in cultured cells at the optimal crosslinking density. These findings highlight the importance of cationic charge preservation in installing crosslinking moieties, providing a rationale for mRNA carrier design in the molecular level.


Assuntos
Dissulfetos/metabolismo , Espaço Intracelular/metabolismo , Polímeros/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Humanos , Micelas , Polietilenoglicóis/metabolismo , Polilisina/metabolismo , Transfecção/métodos
20.
Nat Commun ; 10(1): 1894, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019193

RESUMO

Stabilisation of fragile oligonucleotides, typically small interfering RNA (siRNA), is one of the most critical issues for oligonucleotide therapeutics. Many previous studies encapsulated oligonucleotides into ~100-nm nanoparticles. However, such nanoparticles inevitably accumulate in liver and spleen. Further, some intractable cancers, e.g., tumours in pancreas and brain, have inherent barrier characteristics preventing the penetration of such nanoparticles into tumour microenvironments. Herein, we report an alternative approach to cancer-targeted oligonucleotide delivery using a Y-shaped block catiomer (YBC) with precisely regulated chain length. Notably, the number of positive charges in YBC is adjusted to match that of negative charges in each oligonucleotide strand (i.e., 20). The YBC rendezvouses with a single oligonucleotide in the bloodstream to generate a dynamic ion-pair, termed unit polyion complex (uPIC). Owing to both significant longevity in the bloodstream and appreciably small size (~18 nm), the uPIC efficiently delivers oligonucleotides into pancreatic tumour and brain tumour models, exerting significant antitumour activity.


Assuntos
Antineoplásicos/metabolismo , Neoplasias Encefálicas/terapia , Regulação Neoplásica da Expressão Gênica , Nanoestruturas/química , Oligonucleotídeos/genética , Neoplasias Pancreáticas/terapia , RNA Interferente Pequeno/genética , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Carbocianinas/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Corantes Fluorescentes/química , Humanos , Injeções Intravenosas , Masculino , Camundongos , Nanoestruturas/administração & dosagem , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Oligonucleotídeos/farmacocinética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Polietilenoglicóis/química , Polilisina/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/síntese química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacocinética , Eletricidade Estática , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA