Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 595(8): 2681-2698, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28176353

RESUMO

KEY POINTS: Lysophosphatidic acid (LPA) is an itch mediator, but not a pain mediator by a cheek injection model. Dorsal root ganglion neurons directly respond to LPA depending on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1). LPA-induced itch-related behaviours are decreased in TRPA1-knockout (KO), TRPV1KO or TRPA1TRPV1 double KO mice. TRPA1 and TRPV1 channels are activated by intracellular LPA, but not by extracellular LPA following LPA5 receptor activation with an activity of Ca2+ -independent phospholipase A2 and phospholipase D. Intracellular LPA interaction sites of TRPA1 are KK672-673 and KR977-978 (K: lysine, R: arginine). ABSTRACT: Intractable and continuous itch sensations often accompany diseases such as atopic dermatitis, neurogenic lesions, uremia and cholestasis. Lysophosphatidic acid (LPA) is an itch mediator found in cholestatic itch patients and it induces acute itch and pain in experimental rodent models. However, the molecular mechanism by which LPA activates peripheral sensory neurons remains unknown. In this study, we used a cheek injection method in mice to reveal that LPA induced itch-related behaviours but not pain-related behaviours. The LPA-induced itch behaviour and cellular effects were dependent on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which are important for itch signal transduction. We also found that, among the six LPA receptors, the LPA5 receptor had the greatest involvement in itching. Furthermore, we demonstrated that phospholipase D (PLD) plays a critical role downstream of LPA5 and that LPA directly and intracellularly activates TRPA1 and TRPV1. These results suggest a unique mechanism by which cytoplasmic LPA produced de novo could activate TRPA1 and TRPV1. We conclude that LPA-induced itch is mediated by LPA5 , PLD, TRPA1 and TRPV1 signalling, and thus targeting TRPA1, TRPV1 or PLD could be effective for cholestatic itch interventions.


Assuntos
Lisofosfolipídeos/toxicidade , Fosfolipase D/fisiologia , Prurido/metabolismo , Receptores de Ácidos Lisofosfatídicos/fisiologia , Canais de Cátion TRPV/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prurido/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Canal de Cátion TRPA1
2.
Mol Biol Evol ; 31(3): 708-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24398321

RESUMO

Nociceptive receptors enable animals to sense tissue-damaging stimuli, thus playing crucial roles in survival. Due to evolutionary diversification, responses of nociceptive receptors to specific stimuli can vary among species. Multispecies functional comparisons of nociceptive receptors help elucidate their evolutionary process and molecular basis for activation. The transient receptor potential ankyrin 1 (TRPA1) ion channel serves as a nociceptive receptor for chemical and thermal stimuli that is heat-activated in reptiles and frogs while potentially cold-activated in rodents. Here, we characterized channel properties of avian TRPA1 in chicken. Chicken TRPA1 was activated by noxious chemicals that also activate TRPA1 in other vertebrates. Regarding thermal sensitivity, chicken TRPA1 was activated by heat stimulation, but not cold, thus thermal sensitivity of avian TRPA1 does not coincide with rodent TRPA1, although both are homeotherms. Furthermore, in chicken sensory neurons, TRPA1 was highly coexpressed with TRPV1, another nociceptive heat and chemical receptor, similar to mammals and frogs. These results suggest that TRPA1 acted as a noxious chemical and heat receptor, and was coexpressed with TRPV1 in the ancestral terrestrial vertebrate. The acquisition of TRPV1 as a novel heat receptor in the ancestral terrestrial vertebrate is likely to have affected the functional evolution of TRPA1 regarding thermal sensitivity and led to the diversification among diverse vertebrate species. Additionally, we found for the first time that chicken TRPA1 is activated by methyl anthranilate (MA) and its structurally related chemicals used as nonlethal bird repellents. MA-induced responses were abolished by a TRPA1 antagonist in somatosensory neurons, indicating that TRPA1 acts as a MA receptor in chicken. Furthermore, TRPA1 responses to MA varied among five diverse vertebrate species. Utilizing species diversity and mutagenesis experiments, three amino acids were identified as critical residues for MA-induced activation of chicken TRPA1.


Assuntos
Temperatura Alta , Nociceptividade/efeitos dos fármacos , Controle de Pragas , Homologia de Sequência de Aminoácidos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , ortoaminobenzoatos/farmacologia , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Aves , Galinhas , Evolução Molecular , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Ativação do Canal Iônico , Dados de Sequência Molecular , Oócitos/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Especificidade da Espécie , Canais de Cátion TRPV/metabolismo , Xenopus laevis
3.
Proc Natl Acad Sci U S A ; 109(17): 6745-50, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493272

RESUMO

The ability to sense temperature is essential for organism survival and efficient metabolism. Body temperatures profoundly affect many physiological functions, including immunity. Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive, Ca(2+)-permeable cation channel expressed in a wide range of immunocytes. TRPM2 is activated by adenosine diphosphate ribose and hydrogen peroxide (H(2)O(2)), although the activation mechanism by H(2)O(2) is not well understood. Here we report a unique activation mechanism in which H(2)O(2) lowers the temperature threshold for TRPM2 activation, termed "sensitization," through Met oxidation and adenosine diphosphate ribose production. This sensitization is completely abolished by a single mutation at Met-214, indicating that the temperature threshold of TRPM2 activation is regulated by redox signals that enable channel activity at physiological body temperatures. Loss of TRPM2 attenuates zymosan-evoked macrophage functions, including cytokine release and fever-enhanced phagocytic activity. These findings suggest that redox signals sensitize TRPM2 downstream of NADPH oxidase activity and make TRPM2 active at physiological body temperature, leading to increased cytosolic Ca(2+) concentrations. Our results suggest that TRPM2 sensitization plays important roles in macrophage functions.


Assuntos
Clusterina/fisiologia , Macrófagos/fisiologia , Linhagem Celular , Humanos , Oxirredução , Temperatura
4.
PLoS Genet ; 7(4): e1002041, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21490957

RESUMO

Transient Receptor Potential (TRP) channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV) subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.


Assuntos
Evolução Biológica , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Sensação Térmica/genética , Vertebrados/genética , Vertebrados/metabolismo , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Ordem dos Genes , Humanos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Canais de Cátion TRPV/classificação , Temperatura
5.
J Biol Chem ; 287(36): 30743-54, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22791718

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (V1) perceive noxious temperatures and chemical stimuli and are involved in pain sensation in mammals. Thus, these two channels provide a model for understanding how different genes with similar biological roles may influence the function of one another during the course of evolution. However, the temperature sensitivity of TRPA1 in ancestral vertebrates and its evolutionary path are unknown as its temperature sensitivities vary among different vertebrate species. To elucidate the functional evolution of TRPA1, TRPA1s of the western clawed (WC) frogs and green anole lizards were characterized. WC frog TRPA1 was activated by heat and noxious chemicals that activate mammalian TRPA1. These stimuli also activated native sensory neurons and elicited nocifensive behaviors in WC frogs. Similar to mammals, TRPA1 was functionally co-expressed with TRPV1, another heat- and chemical-sensitive nociceptive receptor, in native sensory neurons of the WC frog. Green anole TRPA1 was also activated by heat and noxious chemical stimulation. These results suggest that TRPA1 was likely a noxious heat and chemical receptor and co-expressed with TRPV1 in the nociceptive sensory neurons of ancestral vertebrates. Conservation of TRPV1 heat sensitivity throughout vertebrate evolution could have changed functional constraints on TRPA1 and influenced the functional evolution of TRPA1 regarding temperature sensitivity, whereas conserving its noxious chemical sensitivity. In addition, our results also demonstrated that two mammalian TRPA1 inhibitors elicited different effect on the TRPA1s of WC frogs and green anoles, which can be utilized to clarify the structural bases for inhibition of TRPA1.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Nociceptividade/fisiologia , Canais de Cátion TRPV , Proteínas de Xenopus , Animais , Sequência de Bases , Clonagem Molecular , Temperatura Alta , Humanos , Lagartos , Camundongos , Dados de Sequência Molecular , Ratos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
6.
J Physiol Sci ; 69(4): 623-634, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31011981

RESUMO

TRPM3 is a non-selective cation channel that is activated by neural steroids such as pregnenolone sulfate, nifedipine, and clotrimazole. Despite the number of TRPM3 variants, few reports have described functional analyses of these different TRPM3 types. Here we identified a new TRPM variant from mouse dorsal root ganglion, termed TRPM3γ3. We classified TRPM3γ3 and another known variant (variant 6) into the γ subtype, and analyzed the TRPM3γ variants. mRNA expression of TRPM3γ was higher than that of TRPM3α variants in the mouse dorsal root ganglion. In Ca2+-imaging of HEK293 cells expressing either the TRPM3γ variants or TRPM3α2, increases in cytosolic Ca2+ concentrations ([Ca2+]i) induced by pregnenolone sulfate or nifedipine were smaller in cells expressing the TRPM3γ variants compared to those expressing TRPM3α2. On the other hand, co-expression of TRPM3γ variants had no effect on [Ca2+]i increases induced by pregnenolone sulfate or nifedipine treatment of HEK293 cells expressing TRPM3α2. In Xenopus oocytes, small responses of TRPM3γ variants to chemical agonists compared to TRPM3α2 were also observed. Interestingly, Xenopus oocytes expressing TRPM3α2 displayed heat-evoked currents with clear thresholds of about 40 °C that were larger than those evoked in oocytes expressing TRPM3γ variants. Overall, these findings indicate that TRPM3γ variants have low channel activity compared to TRPM3α.


Assuntos
Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , RNA Mensageiro/metabolismo , Xenopus/metabolismo
7.
Sci Rep ; 5: 18581, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26677944

RESUMO

Temperature-dependent sex determination (TSD), commonly found among reptiles, is a sex determination mode in which the incubation temperature during a critical temperature sensitive period (TSP) determines sexual fate of the individual rather than the individual's genotypic background. In the American alligator (Alligator mississippiensis), eggs incubated during the TSP at 33 °C (male producing temperature: MPT) yields male offspring, whereas incubation temperatures below 30 °C (female producing temperature: FPT) lead to female offspring. However, many of the details of the underlying molecular mechanism remains elusive, and the molecular link between environmental temperature and sex determination pathway is yet to be elucidated. Here we show the alligator TRPV4 ortholog (AmTRPV4) to be activated at temperatures proximate to the TSD-related temperature in alligators, and using pharmacological exposure, we show that AmTRPV4 channel activity affects gene expression patterns associated with male differentiation. This is the first experimental demonstration of a link between a well-described thermo-sensory mechanism, TRPV4 channel, and its potential role in regulation of TSD in vertebrates, shedding unique new light on the elusive TSD molecular mechanism.


Assuntos
Jacarés e Crocodilos/metabolismo , Processos de Determinação Sexual/fisiologia , Canais de Cátion TRPV/metabolismo , Temperatura , Jacarés e Crocodilos/crescimento & desenvolvimento , Animais , Aromatase/genética , Aromatase/metabolismo , Cálcio/metabolismo , Embrião não Mamífero/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células HEK293 , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Ductos Paramesonéfricos/efeitos dos fármacos , Ductos Paramesonéfricos/patologia , Oócitos/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Processos de Determinação Sexual/efeitos dos fármacos , Sulfonamidas/farmacologia , Canais de Cátion TRPV/genética , Estados Unidos , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA