Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Dev Biol ; 509: 59-69, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373693

RESUMO

Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transdução de Sinais/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mutação/genética , Tamanho Corporal/genética
2.
J Cell Sci ; 135(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34931244

RESUMO

Maintaining proper epithelial cell density is essential for the survival of multicellular organisms. Although regulation of cell density through apoptosis is well known, its mechanistic details remain elusive. Here, we report the involvement of membrane-anchored phosphatase of regenerating liver (PRL), originally known for its role in cancer malignancy, in this process. In epithelial Madin-Darby canine kidney cells, upon confluence, doxycycline-induced expression of PRL upregulated apoptosis, reducing cell density. This could be circumvented by artificially reducing cell density via stretching the cell-seeded silicon chamber. Moreover, small interfering RNA-mediated knockdown of endogenous PRL blocked apoptosis, leading to greater cell density. Mechanistically, PRL promoted apoptosis by upregulating the translation of E-cadherin and activating the TGF-ß pathway. Morpholino-mediated inhibition of PRL expression in zebrafish embryos caused developmental defects, with reduced apoptosis and increased epithelial cell density during convergent extension. Overall, this study revealed a novel role for PRL in regulating density-dependent apoptosis in vertebrate epithelia. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas Tirosina Fosfatases , Peixe-Zebra , Animais , Apoptose/genética , Contagem de Células , Cães , Humanos , Fígado , Células Madin Darby de Rim Canino , Proteínas de Neoplasias , Proteínas Tirosina Fosfatases/genética , Peixe-Zebra/genética
3.
Cancer Sci ; 114(1): 25-33, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36285487

RESUMO

Phosphatase of regenerating liver (PRL) is a family of protein tyrosine phosphatases (PTPs) that are anchored to the plasma membrane by prenylation. They are frequently overexpressed in various types of malignant cancers and their roles in cancer progression have received considerable attention. Mutational analyses of PRLs have shown that their intrinsic phosphatase activity is dispensable for tumor formation induced by PRL overexpression in a lung metastasis model using melanoma cells. Instead, PRLs directly bind to cyclin M (CNNM) Mg2+ exporters in the plasma membrane and potently inhibit their Mg2+ export activity, resulting in an increase in intracellular Mg2+ levels. Experiments using mammalian culture cells, mice, and C. elegans have collectively revealed that dysregulation of Mg2+ levels severely affects ATP and reactive oxygen species (ROS) levels as well as the function of Ca2+ -permeable channels. Moreover, PRL overexpression altered the optimal pH for cell proliferation from normal 7.5 to acidic 6.5, which is typically observed in malignant tumors. Here, we review the phosphatase-independent biological functions of PRLs, focusing on their interactions with CNNM Mg2+ exporters in cancer progression.


Assuntos
Caenorhabditis elegans , Neoplasias Pulmonares , Animais , Camundongos , Caenorhabditis elegans/metabolismo , Proteínas Tirosina Fosfatases/genética , Membrana Celular/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo
4.
Cell Struct Funct ; 47(2): 75-87, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36336348

RESUMO

Phosphatase of regenerating liver (PRL) is frequently overexpressed in various malignant cancers and is known to be a driver of malignancy. Here, we demonstrated that PRL overexpression causes mitotic errors that accompany spindle misorientation and aneuploidy, which are intimately associated with cancer progression. Mechanistic analyses of this phenomenon revealed dysregulation of the energy sensor kinase, AMP-activated protein kinase (AMPK), in PRL-induced mitotic errors. Specifically, immunofluorescence analysis showed that levels of phosphorylated AMPK (P-AMPK), an activated form of AMPK, at the kinetochore were reduced by PRL expression. Moreover, artificial activation of AMPK using chemical activators, such as A769662 and AICAR, in PRL-expressing cells restored P-AMPK signals at the kinetochore and normalized spindle orientation. Collectively, these results indicate the crucial importance of the activation of kinetochore-localized AMPK in the normal progression of mitosis, which is specifically perturbed by PRL overexpression.Key words: cancer, AMPK, PRL, kinetochore, mitotic errors.


Assuntos
Cinetocoros , Neoplasias , Humanos , Cinetocoros/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fuso Acromático/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Mitose , Fígado/metabolismo , Neoplasias/metabolismo
5.
J Pharmacol Sci ; 148(1): 14-18, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924118

RESUMO

Cyclin M (CNNM) and its prokaryotic ortholog CorC belong to a family of proteins that function as Mg2+-extruding transporters by stimulating Na+/Mg2+ exchange, and thereby control intracellular Mg2+ levels. The Mg2+-extruding function of CNNM is inhibited by the direct binding of an oncogenic protein, phosphatase of regenerating liver (PRL), and this inhibition is responsible for the PRL-driven malignant progression of cancers. Studies with mouse strains deficient for the CNNM gene family revealed the importance of CNNM4 and CNNM2 in maintaining organismal Mg2+ homeostasis by participating in intestinal Mg2+ absorption and renal reabsorption, respectively. Moreover, CNNM proteins are involved in various diseases, and gene mutations in CNNM2 and CNNM4 cause dominant familial hypomagnesemia and Jalili syndrome, respectively. Genome wide association studies have also revealed the importance of CNNM2 in multiple major diseases, such as hypertension and schizophrenia. Collectively, the molecular and biological characterizations of CNNM/CorC show that they are an intriguing therapeutic target; the current status of drug development targeting these proteins is also discussed.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/fisiologia , Estudo de Associação Genômica Ampla , Magnésio/metabolismo , Terapia de Alvo Molecular , Neoplasias/genética , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/terapia , Animais , Proteínas de Transporte de Cátions/metabolismo , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/terapia , Homeostase/genética , Humanos , Hipercalciúria/genética , Hipercalciúria/terapia , Hipertensão/genética , Hipertensão/terapia , Rim/metabolismo , Camundongos , Mutação , Neoplasias/terapia , Nefrocalcinose/genética , Nefrocalcinose/terapia , Ligação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/terapia , Esquizofrenia/genética , Esquizofrenia/terapia
6.
J Biol Chem ; 295(33): 11682-11692, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571875

RESUMO

Phosphatases of regenerating liver (PRLs) are markers of cancer and promote tumor growth. They have been implicated in a variety of biochemical pathways but the physiologically relevant target of phosphatase activity has eluded 20 years of investigation. Here, we show that PRL3 catalytic activity is not required in a mouse model of metastasis. PRL3 binds and inhibits CNNM4, a membrane protein associated with magnesium transport. Analysis of PRL3 mutants specifically defective in either CNNM-binding or phosphatase activity demonstrate that CNNM binding is necessary and sufficient to promote tumor metastasis. As PRLs do have phosphatase activity, they are in fact pseudo-pseudophosphatases. Phosphatase activity leads to formation of phosphocysteine, which blocks CNNM binding and may play a regulatory role. We show levels of PRL cysteine phosphorylation vary in response to culture conditions and in different tissues. Examination of related protein phosphatases shows the stability of phosphocysteine is a unique and evolutionarily conserved property of PRLs. The demonstration that PRL3 functions as a pseudophosphatase has important ramifications for the design of PRL inhibitors for cancer.


Assuntos
Carcinogênese/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Células COS , Carcinogênese/genética , Carcinogênese/patologia , Chlorocebus aethiops , Feminino , Células HEK293 , Células HeLa , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Magnésio/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética
7.
Biochem J ; 476(10): 1419-1431, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31036720

RESUMO

Phosphatase of regenerating liver (PRL) is overexpressed in metastatic cancers and actively drives their malignant progression. Many studies on cultured cancer cells have implied PRL overexpression as a stimulant for cellular signaling involved in cell proliferation. However, its role in the tightly adhered and polarized epithelial cells remains largely uncharacterized. In this study, we show that inducible expression of PRL in MDCK normal epithelial cells sensitized MET, the receptor for hepatocyte growth factor (HGF), to functional activation by HGF. We found that PRL expression amplified tyrosine phosphorylation levels of various proteins, among which MET was identified to be the most abundant. This phosphorylation occurred selectively at Y1234/1235 in the activation loop of MET, whereas phosphorylation of Y1349 in the effector-binding site, which is directly involved in downstream signaling, was almost undetectable. Consistently, PRL overexpression by itself did not cause observable alterations at the cellular level. However, when cells were stimulated with HGF, phosphorylation of Y1349 was much more strongly induced in PRL-expressing cells than in control cells. This resulted in robust cell scattering and tubulogenesis, even with low levels of HGF. Collectively, these results demonstrate a unique role of PRL in regulating MET function, which is known to be crucial for remodeling of epithelial tissues and malignant progression of cancers.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Cães , Fator de Crescimento de Hepatócito/genética , Células Madin Darby de Rim Canino , Neoplasias/genética , Fosforilação , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-met/genética
8.
J Biol Chem ; 293(52): 19998-20007, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30341174

RESUMO

Proteins of the cyclin M family (CNNMs; also called ancient conserved domain proteins, or ACDPs) are represented by four integral membrane proteins that have been proposed to function as Mg2+ transporters. CNNMs are associated with a number of genetic diseases affecting ion movement and cancer via their association with highly oncogenic phosphatases of regenerating liver (PRLs). Structurally, CNNMs contain an N-terminal extracellular domain, a transmembrane domain (DUF21), and a large cytosolic region containing a cystathionine-ß-synthase (CBS) domain and a putative cyclic nucleotide-binding homology (CNBH) domain. Although the CBS domain has been extensively characterized, little is known about the CNBH domain. Here, we determined the first crystal structures of the CNBH domains of CNNM2 and CNNM3 at 2.6 and 1.9 Å resolutions. Contrary to expectation, these domains did not bind cyclic nucleotides, but mediated dimerization both in crystals and in solution. Analytical ultracentrifugation experiments revealed an inverse correlation between the propensity of the CNBH domains to dimerize and the ability of CNNMs to mediate Mg2+ efflux. CNBH domains from active family members were observed as both dimers and monomers, whereas the inactive member, CNNM3, was observed only as a dimer. Mutational analysis revealed that the CNBH domain was required for Mg2+ efflux activity of CNNM4. This work provides a structural basis for understanding the function of CNNM proteins in Mg2+ transport and associated diseases.


Assuntos
Ciclinas/metabolismo , Magnésio/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions , Cristalografia por Raios X , Ciclinas/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
9.
Biochem J ; 475(6): 1129-1139, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29487165

RESUMO

Phosphatase of regenerating liver (PRL) is highly expressed in malignant cancers and promotes cancer progression. Recent studies have suggested its functional relationship with Mg2+, but the importance and molecular details of this relationship remain unknown. Here, we report that PRL expression is regulated by Mg2+ and PRL protects cells from apoptosis under Mg2+-depleted conditions. When cultured cells were subjected to Mg2+ depletion, endogenous PRL protein levels increased significantly. siRNA-mediated knockdown of endogenous PRL did not significantly affect cell proliferation under normal culture conditions, but it increased cell death after Mg2+ depletion. Imaging analyses with a fluorescent probe for Mg2+ showed that PRL knockdown severely reduced intracellular Mg2+ levels, indicating a role for PRL in maintaining intracellular Mg2+ We also examined the mechanism of augmented expression of PRL proteins and found that PRL mRNA transcription was stimulated by Mg2+ depletion. A series of analyses revealed the activation and the crucial importance of signal transducer and activator of transcription 1 in this process. Collectively, these results implicate PRL in maintaining cellular Mg2+ homeostasis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Homeostase/genética , Magnésio/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Tirosina Fosfatases/fisiologia , Apoptose/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HEK293 , Células HeLa , Homeostase/efeitos dos fármacos , Humanos , Magnésio/farmacologia , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Proteínas Tirosina Fosfatases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
PLoS Genet ; 12(8): e1006276, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27564576

RESUMO

Mg2+ serves as an essential cofactor for numerous enzymes and its levels are tightly regulated by various Mg2+ transporters. Here, we analyzed Caenorhabditis elegans strains carrying mutations in genes encoding cyclin M (CNNM) Mg2+ transporters. We isolated inactivating mutants for each of the five Caenorhabditis elegans cnnm family genes, cnnm-1 through cnnm-5. cnnm-1; cnnm-3 double mutant worms showed various phenotypes, among which the sterile phenotype was rescued by supplementing the media with Mg2+. This sterility was caused by a gonadogenesis defect with severely attenuated proliferation of germ cells. Using this gonadogenesis defect as an indicator, we performed genome-wide RNAi screening, to search for genes associated with this phenotype. The results revealed that RNAi-mediated inactivation of several genes restores gonad elongation, including aak-2, which encodes the catalytic subunit of AMP-activated protein kinase (AMPK). We then generated triple mutant worms for cnnm-1; cnnm-3; aak-2 and confirmed that the aak-2 mutation also suppressed the defective gonadal elongation in cnnm-1; cnnm-3 mutant worms. AMPK is activated under low-energy conditions and plays a central role in regulating cellular metabolism to adapt to the energy status of cells. Thus, we provide genetic evidence linking Mg2+ homeostasis to energy metabolism via AMPK.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte de Cátions/genética , Ciclinas/genética , Longevidade/genética , Complexos Multiproteicos/genética , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinases TOR/genética , Proteínas Quinases Ativadas por AMP , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Ciclinas/biossíntese , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Magnésio/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Família Multigênica/genética , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética
11.
J Cell Sci ; 129(9): 1940-9, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27006114

RESUMO

Ca(2+) influx triggers sperm capacitation; however, the underlying regulatory mechanisms remain incompletely understood. Here, we show that CNNM4, a Mg(2+) transporter, is required for Ca(2+) influx during capacitation. We find that Cnnm4-deficient male mice are almost infertile because of sperm dysfunction. Motion analyses show that hyperactivation, a qualitative change in the mode of sperm motility during capacitation, is abrogated in Cnnm4-deficient sperm. In contrast, tyrosine phosphorylation of flagellar proteins, a hallmark of capacitation, is excessively augmented. These seemingly paradoxical phenotypes of Cnnm4-deficient sperm are very similar to those of sperm lacking a functional cation channel of sperm (CatSper) channel, which plays an essential role in Ca(2+) influx during sperm capacitation. Ca(2+) imaging analyses demonstrate that Ca(2+) influx is perturbed in Cnnm4-deficient sperm, and forced Ca(2+) entry into these sperm normalizes the level of tyrosine phosphorylation. Furthermore, we confirm the importance of CNNM4 in sperm by generating germ-cell-specific Cnnm4-deficient mice. These results suggest a new role of CNNM4 in sperm Ca(2+) homeostasis.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/citologia
12.
EMBO Rep ; 17(12): 1890-1900, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27856537

RESUMO

PRLs (phosphatases of regenerating liver) are frequently overexpressed in human cancers and are prognostic markers of poor survival. Despite their potential as therapeutic targets, their mechanism of action is not understood in part due to their weak enzymatic activity. Previous studies revealed that PRLs interact with CNNM ion transporters and prevent CNNM4-dependent Mg2+ transport, which is important for energy metabolism and tumor progression. Here, we report that PRL-CNNM complex formation is regulated by the formation of phosphocysteine. We show that cysteine in the PRL catalytic site is endogenously phosphorylated as part of the catalytic cycle and that phosphocysteine levels change in response to Mg2+ levels. Phosphorylation blocks PRL binding to CNNM Mg2+ transporters, and mutations that block the PRL-CNNM interaction prevent regulation of Mg2+ efflux in cultured cells. The crystal structure of the complex of PRL2 and the CBS-pair domain of the Mg2+ transporter CNNM3 reveals the molecular basis for the interaction. The identification of phosphocysteine as a regulatory modification opens new perspectives for signaling by protein phosphatases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Cisteína/análogos & derivados , Homeostase , Magnésio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Proteínas de Transporte de Cátions , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Neoplasias , Fosforilação , Ligação Proteica , Proteínas Tirosina Fosfatases/genética
13.
Biochem Biophys Res Commun ; 474(3): 441-446, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27150626

RESUMO

Ca(2+) plays a central role in the regulation of sperm motility. We recently reported an unexpected role of CNNM4, a Mg(2+) transporter, in this process by demonstrating perturbed Ca(2+) influx and gradual loss of motility of Cnnm4-deficient sperm. However, Cnnm4-deficient male mice were not entirely infertile, and a significant Ca(2+) response was still observed in their sperm. In the present study, we generated Cnnm4-deficient mice harboring a non-functional Cnnm2 allele (Cnnm2(Δ)), to examine whether CNNM2 compensates for the lost function of CNNM4 in sperm. Cnnm2(+/Δ); Cnnm4(Δ/Δ) mice were infertile, and no obvious histological abnormalities were noted in their testis and epididymis. Their sperm showed normal morphology, but became immotile much more rapidly than those from Cnnm4(Δ/Δ) mice. When capacitation was initiated using serum albumin application, a rapid increase of intracellular Ca(2+) levels was observed in most wild-type sperm, but only about half of sperm from Cnnm4(Δ/Δ) mice exhibited a Ca(2+) response, and the response rate was further reduced in sperm from Cnnm2(+/Δ); Cnnm4(Δ/Δ) mice. Thus, sperm motility and Ca(2+) response were more severely affected in sperm from Cnnm2(+/Δ); Cnnm4(Δ/Δ) mice than in those from Cnnm4(Δ/Δ) mice, implicating CNNM2 in regulating these processes.


Assuntos
Sinalização do Cálcio , Proteínas de Transporte de Cátions/metabolismo , Infertilidade Masculina/metabolismo , Capacitação Espermática , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Animais , Cálcio/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos
14.
PLoS Genet ; 9(12): e1003983, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339795

RESUMO

Transcellular Mg(2+) transport across epithelia, involving both apical entry and basolateral extrusion, is essential for magnesium homeostasis, but molecules involved in basolateral extrusion have not yet been identified. Here, we show that CNNM4 is the basolaterally located Mg(2+) extrusion molecule. CNNM4 is strongly expressed in intestinal epithelia and localizes to their basolateral membrane. CNNM4-knockout mice showed hypomagnesemia due to the intestinal malabsorption of magnesium, suggesting its role in Mg(2+) extrusion to the inner parts of body. Imaging analyses revealed that CNNM4 can extrude Mg(2+) by exchanging intracellular Mg(2+) with extracellular Na(+). Furthermore, CNNM4 mutations cause Jalili syndrome, characterized by recessive amelogenesis imperfecta with cone-rod dystrophy. CNNM4-knockout mice showed defective amelogenesis, and CNNM4 again localizes to the basolateral membrane of ameloblasts, the enamel-forming epithelial cells. Missense point mutations associated with the disease abolish the Mg(2+) extrusion activity. These results demonstrate the crucial importance of Mg(2+) extrusion by CNNM4 in organismal and topical regulation of magnesium.


Assuntos
Amelogênese Imperfeita/genética , Proteínas de Transporte de Cátions/genética , Hipertricose/genética , Amaurose Congênita de Leber/genética , Magnésio/metabolismo , Retinose Pigmentar/genética , Amelogênese Imperfeita/patologia , Animais , Transporte Biológico/genética , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Epitélio/metabolismo , Humanos , Hipertricose/patologia , Amaurose Congênita de Leber/patologia , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Retinose Pigmentar/patologia
15.
J Biol Chem ; 289(21): 14731-9, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24706765

RESUMO

Ancient conserved domain protein/cyclin M (CNNM) family proteins are evolutionarily conserved Mg(2+) transporters. However, their biochemical mechanism of action remains unknown. Here, we show the functional importance of the commonly conserved cystathionine-ß-synthase (CBS) domains and reveal their unique binding ability to ATP. Deletion mutants of CNNM2 and CNNM4, lacking the CBS domains, are unable to promote Mg(2+) efflux. Furthermore, the substitution of one amino acid residue in the CBS domains of CNNM2, which is associated with human hereditary hypomagnesemia, abrogates Mg(2+) efflux. Binding analyses reveal that the CBS domains of CNNM2 bind directly to ATP and not AMP in a manner dependent on the presence of Mg(2+), which is inhibited in a similar pattern by the disease-associated amino acid substitution. The requirement of Mg(2+) for these interactions is a unique feature among CBS domains, which can be explained by the presence of highly electronegative surface potentials around the ATP binding site on CNNM2. These results demonstrate that the CBS domains play essential roles in Mg(2+) efflux, probably through interactions with ATP. Interactions with ATP, which mostly forms complexes with Mg(2+) in cells, may account for the rapid Mg(2+) transport by CNNM family proteins.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cistationina beta-Sintase/metabolismo , Magnésio/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação/genética , Western Blotting , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Células HEK293 , Humanos , Transporte de Íons/genética , Camundongos , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica/genética , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática
16.
Methods ; 65(2): 184-9, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23831336

RESUMO

Recent studies have revealed that reactive oxygen species (ROS) are actively generated in cells and function as second messengers to mediate physiological intracellular signaling. ROS exert their effects on intracellular signaling via ROS effector proteins, which are sensitively and reversibly oxidized by ROS. Among various ROS effector proteins, the protein tyrosine phosphatase (PTP) family is of special interest. In the catalytic pocket, PTP proteins commonly possess a highly reactive cysteine (Cys) residue, which is susceptible to oxidation by ROS. Phosphatase of regenerating liver (PRL) belongs to the PTP family and is oxidized by ROS to form an intramolecular disulfide bond. In general, disulfide bonds in proteins can be reduced in cells with the help of various reducing enzymes, which enables the reversible redox regulation of PRL proteins. In the case of PRL proteins, thioredoxin-related protein 32 specifically catalyzes the reducing reaction, indicating the importance of redox regulation for ROS effector proteins.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Bioensaio , Domínio Catalítico , Cisteína/química , Oxirredução , Proteínas Tirosina Quinases/química , Espécies Reativas de Oxigênio/química
17.
J Biol Chem ; 288(10): 7263-70, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23362275

RESUMO

PRL family constitutes a unique class of phosphatases associated with metastasis. The phosphatase activity of PRL has been reported to be important for promoting metastasis, and it is inactivated by reversible oxidation of its catalytic cysteine. Here, we show that TRP32 specifically reduces PRL. Reduction of oxidized PRL in cells is inhibited by 2,4-dinitro-1-chlorobenzene, an inhibitor of TRX reductase. In vitro assays for the reduction of PRL show that only TRP32 can potently reduce oxidized PRL, whereas other TRX-related proteins linked to TRX reductase show little or no reducing activity. Indeed, TRP32 knockdown significantly prolongs the H2O2-induced oxidation of PRL. Binding analyses reveal that the unique C-terminal domain of TRP32 is required and sufficient for its direct interaction with PRL. These results suggest that TRP32 maintains the reduced state of PRL and thus regulates the biological function of PRL.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Tiorredoxinas/metabolismo , Animais , Células COS , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Dinitroclorobenzeno/farmacologia , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , Immunoblotting , Proteínas de Membrana/genética , Mutação , Proteínas de Neoplasias/genética , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Ligação Proteica , Proteínas Tirosina Fosfatases/genética , Interferência de RNA , Tiorredoxinas/genética
18.
Biochem Biophys Res Commun ; 455(3-4): 184-9, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25449265

RESUMO

Ancient conserved domain protein/cyclin M (CNNM) 4 is an evolutionarily conserved Mg(2+) transporter that localizes at the basolateral membrane of the intestinal epithelia. Here, we show the complementary importance of clathrin adaptor protein (AP) complexes AP-1A and AP-1B in basolateral sorting of CNNM4. We first confirmed the basolateral localization of both endogenous and ectopically expressed CNNM4 in Madin-Darby Canine Kidney cells, which form highly polarized epithelia in culture. Single knockdown of µ1B, a cargo-recognition subunit of AP-1B, did not affect basolateral localization, but simultaneous knockdown of the µ1A subunit of AP-1A abrogated localization. Mutational analyses showed the importance of three conserved dileucine motifs in CNNM4 for both basolateral sorting and interaction with µ1A and µ1B. These results imply that CNNM4 is sorted to the basolateral membrane by the complementary function of AP-1A and AP-1B.


Assuntos
Complexo 1 de Proteínas Adaptadoras/fisiologia , Subunidades beta do Complexo de Proteínas Adaptadoras/fisiologia , Subunidades mu do Complexo de Proteínas Adaptadoras/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica , Magnésio/química , Complexo 1 de Proteínas Adaptadoras/química , Subunidades beta do Complexo de Proteínas Adaptadoras/química , Subunidades mu do Complexo de Proteínas Adaptadoras/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biotinilação , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , DNA Complementar/metabolismo , Cães , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Transporte Proteico , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA