RESUMO
Identifying organs within histology images is a fundamental and non-trivial step in toxicological digital pathology workflows as multiple organs often appear on the same whole slide image (WSI). Previous works in automated tissue classification have investigated the use of single magnifications, and demonstrated limitations when attempting to identify small and contiguous organs at low magnifications. In order to overcome these shortcomings, we present a multi-magnification convolutional neural network (CNN), called MMO-Net, which employs context and cellular detail from different magnifications to facilitate the recognition of complex organs. Across N=320 WSI from 3 contract research organization (CRO) laboratories, we demonstrate state-of-the-art organ detection and segmentation performance of 7 rat organs with and without lesions: liver, kidney, thyroid gland, parathyroid gland, urinary bladder, salivary gland, and mandibular lymph node (AUROC=0.99-1.0 for all organs, Dice≥0.9 except parathyroid (0.73)). Evaluation takes place at both inter- and intra CRO levels, suggesting strong generalizability performance. Results are qualitatively reviewed using visualization masks to ensure separation of organs in close proximity (e.g., thyroid vs parathyroid glands). MMO-Net thus offers organ localization that serves as a potential quality control tool to validate WSI metadata and as a preprocessing step for subsequent organ-specific artificial intelligence (AI) use cases. To facilitate research in this area, all associated WSI and metadata used for this study are being made freely available, forming a first of its kind dataset for public use.
RESUMO
The potential of 4-chloro-ortho-toluidine (4-CloT), an aromatic amine substituted on the ortho- and para-position of the amine function, to induce DNA damage in male Wistar rats was evaluated with the micronucleus test (peripheral blood), Pig-a (peripheral blood), and comet assay (peripheral blood, liver, urinary bladder, jejunum) at several time points. In addition to those markers of DNA damage, ie, gene mutation and clastogenicity, standard hematology, including methemoglobin, histopathology and immunohistochemistry of γ-H2AX and Ki-67 in liver, jejunum, and urinary bladder were performed. 4-CloT was administered orally over 28 consecutive days (days 1-28), followed by a 28-day treatment-free (days 29-56), and a second dosing phase of 3 days (days 57-59). 4-CloT showed some effects on the integrity of the DNA as measured by the comet assay in liver and urinary bladder but not in peripheral blood or jejunum. However, for liver and urinary bladder histopathological changes were observed. An increase in the frequency of micronuclei in peripheral blood was seen in parallel to a dose-dependent increase of reticulocytes and methemoglobin. Therefore, impact from a compensatory erythropoiesis on micronucleation cannot be excluded. Interestingly, no increase in the frequency of RETCD59- and RBCCD59- was observed in the Pig-a assay.
Assuntos
Dano ao DNA , Jejuno/efeitos dos fármacos , Fígado/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Mutagênicos/toxicidade , Toluidinas/toxicidade , Bexiga Urinária/efeitos dos fármacos , Animais , Ensaio Cometa , Relação Dose-Resposta a Droga , Jejuno/patologia , Fígado/patologia , Masculino , Testes para Micronúcleos , Especificidade de Órgãos , Ratos Wistar , Bexiga Urinária/patologiaRESUMO
Glycine is a key rate-limiting component of heme biosynthesis in erythropoietic cells, where the high intracellular glycine demand is primarily supplied by the glycine transporter 1 (GlyT1). The impact of intracellular glycine restriction after GlyT1 inhibition on hematopoiesis and iron regulation is not well established. We investigated the effects of a potent and selective inhibitor of GlyT1, bitopertin, on erythropoiesis and iron homeostasis in rats. GlyT1 inhibition significantly affected erythroid heme biosynthesis, manifesting as microcytic hypochromic regenerative anemia with a 20% steady-state reduction in hemoglobin. Reduced erythropoietic iron utilization was characterized by down-regulation of the transferrin receptor 1 (TfR1) on reticulocytes and modest increased iron storage in the spleen. Hepatic hepcidin expression was not affected. However, under the condition of reduced heme biosynthesis with reduced iron reutilization and increased storage iron, hepcidin at the lower and higher range of normal showed a striking role in tissue distribution of iron. Rapid formation of iron-positive inclusion bodies (IBs) was observed in circulating reticulocytes, with an ultrastructure of iron-containing polymorphic mitochondrial remnants. IB or mitochondrial iron accumulation was absent in bone marrow erythroblasts. In conclusion, GlyT1 inhibition in rats induced a steady-state microcytic hypochromic regenerative anemia and a species-specific accumulation of uncommitted mitochondrial iron in reticulocytes. Importantly, this glycine-restricted anemia provides no feedback signal for increased systemic iron acquisition and the effects reported are pathogenetically distinct from systemic iron-overload anemias and erythropoietic disorders such as acquired sideroblastic anemia.
Assuntos
Eritropoese/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Homeostase/efeitos dos fármacos , Ferro/metabolismo , Piperazinas/farmacologia , Sulfonas/farmacologia , Anemia Hipocrômica/sangue , Anemia Hipocrômica/etiologia , Anemia Hipocrômica/metabolismo , Animais , Biomarcadores , Células Sanguíneas/metabolismo , Medula Óssea/metabolismo , Inclusões Eritrocíticas/metabolismo , Inclusões Eritrocíticas/patologia , Inclusões Eritrocíticas/ultraestrutura , Eritrócitos Anormais/metabolismo , Eritrócitos Anormais/patologia , Eritrócitos Anormais/ultraestrutura , Feminino , Ferritinas/metabolismo , Hepcidinas/metabolismo , Piperazinas/efeitos adversos , Protoporfirinas/metabolismo , Ratos , Reticulócitos/metabolismo , Sulfonas/efeitos adversos , Transferrina/metabolismoRESUMO
We report the discovery of a new monomeric peptide that reduces body weight and diabetic complications in rodent models of obesity by acting as an agonist at three key metabolically-related peptide hormone receptors: glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon receptors. This triple agonist demonstrates supraphysiological potency and equally aligned constituent activities at each receptor, all without cross-reactivity at other related receptors. Such balanced unimolecular triple agonism proved superior to any existing dual coagonists and best-in-class monoagonists to reduce body weight, enhance glycemic control and reverse hepatic steatosis in relevant rodent models. Various loss-of-function models, including genetic knockout, pharmacological blockade and selective chemical knockout, confirmed contributions of each constituent activity in vivo. We demonstrate that these individual constituent activities harmonize to govern the overall metabolic efficacy, which predominantly results from synergistic glucagon action to increase energy expenditure, GLP-1 action to reduce caloric intake and improve glucose control, and GIP action to potentiate the incretin effect and buffer against the diabetogenic effect of inherent glucagon activity. These preclinical studies suggest that, so far, this unimolecular, polypharmaceutical strategy has potential to be the most effective pharmacological approach to reversing obesity and related metabolic disorders.
Assuntos
Complicações do Diabetes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Peptídeos/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/genética , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células HEK293 , Humanos , Insulina/biossíntese , Insulina/metabolismo , Camundongos , Obesidade/tratamento farmacológico , Obesidade/genética , Peptídeos/síntese química , Peptídeos/metabolismo , Ratos , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , RoedoresRESUMO
Mesenchymal stromal cells (MSCs) are rare progenitor cells that can be isolated from various tissues. They exhibit multilineage differentiation potential, support regenerative processes, and interact with various immune cells. Therefore, MSCs represent a promising tool for regenerative medicine. However, source-dependent and donor-dependent differences of MSC properties, including implications on their clinical application are still largely unknown. We evaluated MSCs derived from perinatal tissues umbilical cord (UC) and amniotic membrane (AM) in comparison to adult MSCs from bone marrow (BM), which were used as gold standard. We found genetic background-independent differences between MSCs from UC and AM. While AM- and UC-MSCs were closer to each other than to BM-MSCs, they also exhibited differences between each other. AM-MSCs from different donors but not UC-MSCs displayed high interdonor variability. In addition, we show that although all MSCs expressed similar surface markers, MSC populations from UC and AM showed differential profiles of gene expression and paracrine factor secretion to BM-derived MSCs. Notably, pathway analysis of gene expression data revealed intriguing differences between MSCs suggesting that MSCs from UC and AM possess in general a higher potential of immunomodulatory capacity, whereas BM-MSCs showed a higher potential of supporting regenerative processes as exemplified by neuronal differentiation and development. These differences between perinatal and BM-derived MSCs may be relevant for clinical applications.
Assuntos
Diferenciação Celular/fisiologia , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Placenta/citologia , Âmnio/citologia , Âmnio/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem da Célula , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cariótipo , Células-Tronco Mesenquimais/citologia , Gravidez , Regeneração , Cordão Umbilical/citologia , Cordão Umbilical/metabolismoRESUMO
Glomerular visceral epithelial cells or podocytes are crucial for glomerular function and podocyte damage has been shown to be inevitably involved in glomerulopathies. Podocytes react to injury in a stereotypic manner. Accompanying morphologic changes is altered expression of intermediate filaments. Desmin is strongly upregulated in injured podocytes. Here we show, that semi-automated quantitative image analysis of desmin immunoreactivity in glomerula is a valid and sensitive marker for acute podocyte and thus glomerular damage in the puromycin aminonucleoside nephrosis (PAN) model in the rat with the potential of an efficacy marker in animal disease models as well as a toxicity marker for podocyte injury. Additionally, a panel of acknowledged urinary kidney biomarkers was evaluated for utility in the PAN model.
Assuntos
Desmina/metabolismo , Nefrose/patologia , Podócitos/patologia , Puromicina Aminonucleosídeo/toxicidade , Doença Aguda , Animais , Biomarcadores/metabolismo , Biomarcadores/urina , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interpretação de Imagem Assistida por Computador , Imuno-Histoquímica , Testes de Função Renal , Masculino , Nefrose/induzido quimicamente , Nefrose/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de DoençaRESUMO
To investigate natural killer (NK) and lymphokine-activated killer (LAK) cell functions from 10 healthy dogs and 29 dogs with a variety of spontaneous neoplasms, large granular lymphocytes (LGLs) from blood samples were separated by a 58.5% Percoll density gradient. LGLs were stimulated with a low dose of recombinant human interleukin 2 (rhIL-2) for 7 days. Cytotoxicity of effector cells against the susceptible CTAC cell line was measured before and after stimulation. Compared with those before stimulation, the percentage of LGLs after stimulation with rhIL-2 was found to be significantly increased (P<0.01) in both dogs with tumors and controls. However, the increase was significantly higher in control animals, indicating a defect in proliferation ability of NK cells in canine tumor patients. After stimulation with rhIL-2, lymphokine-activated killer (LAK) cell activity in dogs with tumors was significantly lower (P<0.01) when compared with controls. Reduced cytotoxicity of rhIL-2-activated NK cells in dogs with tumors seems to be attributable to the presence of a diminished proliferative capacity of NK cells and a decreased ability of LAK cells to lyse target cells. Further knowledge of the precise function of IL-2-activated NK cells in dogs with tumors may help to optimize new and therapeutically beneficial treatment strategies in canine and human cancer patients. Our findings suggest that the dog could also serve as a relevant large animal model for cancer immunotherapy with IL-2.
Assuntos
Interleucina-2/farmacologia , Células Matadoras Ativadas por Linfocina/fisiologia , Células Matadoras Naturais/fisiologia , Linfócitos/efeitos dos fármacos , Neoplasias/imunologia , Animais , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade , Cães , Humanos , Células Matadoras Ativadas por Linfocina/efeitos dos fármacos , Células Matadoras Ativadas por Linfocina/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Linfócitos/patologia , Neoplasias/veterinária , Proteínas Recombinantes/farmacologiaRESUMO
We reported recently that albumin is a suitable drug carrier for targeted delivery of methotrexate (MTX) to tumors. Due to pathophysiological conditions in neoplastic tissue, high amounts of albumin accumulate in tumors and are metabolized by malignant cells. MTX, covalently coupled to human serum albumin (MTX-HSA) for cancer treatment, is currently being evaluated in phase II clinical trials. Because synovium of patients with rheumatoid arthritis (RA) shares various features observed also in tumors, albumin-based drug targeting of inflamed joints might be an attractive therapeutic approach. Therefore, the pharmacokinetics of albumin and MTX in a mouse model of arthritis was examined. Additionally, uptake of albumin by synovial fibroblasts of RA patients and the efficacy of MTX and MTX-HSA in arthritic mice were studied. The results show that when compared with MTX, significantly higher amounts of albumin accumulate in inflamed paws, and significantly lower amounts of albumin are found in the liver and the kidneys. The protein is metabolized by human synovial fibroblasts in vitro and in vivo. MTX-HSA was significantly more effective in suppression of the onset of arthritis in mice than was MTX. In conclusion, albumin appears to be a suitable drug carrier in RA, most likely due to effects on synovial fibroblasts, which might increase therapeutic efficacy and reduce side effects of MTX.