Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(5): 2586-2594, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29378406

RESUMO

Trace U was released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) during the meltdowns, but the speciation of the released components of the nuclear fuel remains unknown. We report, for the first time, the atomic-scale characteristics of nanofragments of the nuclear fuels that were released from the FDNPP into the environment. Nanofragments of an intrinsic U-phase were discovered to be closely associated with radioactive cesium-rich microparticles (CsMPs) in paddy soils collected ∼4 km from the FDNPP. The nanoscale fuel fragments were either encapsulated by or attached to CsMPs and occurred in two different forms: (i) UO2+X nanocrystals of ∼70 nm size, which are embedded into magnetite associated with Tc and Mo on the surface and (ii) Isometric (U,Zr)O2+X nanocrystals of ∼200 nm size, with the U/(U+Zr) molar ratio ranging from 0.14 to 0.91, with intrinsic pores (∼6 nm), indicating the entrapment of vapors or fission-product gases during crystallization. These results document the heterogeneous physical and chemical properties of debris at the nanoscale, which is a mixture of melted fuel and reactor materials, reflecting the complex thermal processes within the FDNPP reactor during meltdown. Still CsMPs are an important medium for the transport of debris fragments into the environment in a respirable form.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Césio , Radioisótopos de Césio , Japão , Centrais Nucleares , Compostos de Urânio
2.
Environ Sci Technol ; 52(11): 6390-6398, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782160

RESUMO

Highly radioactive cesium-rich microparticles (CsMPs) were released from the Fukushima Daiichi nuclear power plant (FDNPP) to the surrounding environment at an early stage of the nuclear disaster in March of 2011; however, the quantity of released CsMPs remains undetermined. Here, we report a novel method to quantify the number of CsMPs in surface soils at or around Fukushima and the fraction of radioactivity they contribute, which we call "quantification of CsMPs" (QCP) and is based on autoradiography. Here, photostimulated luminescence (PSL) is linearly correlated to the radioactivity of various microparticles, with a regression coefficient of 0.0523 becquerel/PSL/h (Bq/PSL/h). In soil collected from Nagadoro, Fukushima, Japan, CsMPs were detected in soil sieved with a 114 µm mesh. There was no overlap between the radioactivities of CsMPs and clay particles adsorbing Cs. Based on the distribution of radioactivity of CsMPs, the threshold radioactivity of CsMPs in the size fraction of <114 µm was determined to be 0.06 Bq. Based on this method, the number and radioactivity fraction of CsMPs in four surface soils collected from the vicinity of the FDNPP were determined to be 48-318 particles per gram and 8.53-31.8%, respectively. The QCP method is applicable to soils with a total radioactivity as high as ∼106 Bq/kg. This novel method is critically important and can be used to quantitatively understand the distribution and migration of the highly radioactive CsMPs in near-surface environments surrounding Fukushima.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Radioatividade , Césio , Radioisótopos de Césio , Japão , Centrais Nucleares
3.
Chemosphere ; 233: 633-644, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31195267

RESUMO

To understand the chemical durability of highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant in March 2011, we have, for the first time, performed systematic dissolution experiments with CsMPs isolated from Fukushima soils (one sample with 108 Bq and one sample with 57.8 Bq of 137Cs) using three types of solutions: simulated lung fluid, ultrapure water, and artificial sea water, at 25 and 37 °C for 1-63 days. The 137Cs was released rapidly within three days and then steady-state dissolution was achieved for each solution type. The steady-state 137Cs release rate at 25 °C was determined to be 4.7 × 103, 1.3 × 103, and 1. 3 × 103 Bq·m-2 s-1 for simulated lung fluid, ultrapure water, and artificial sea water, respectively. This indicates that the simulated lung fluid promotes the dissolution of CsMPs. The dissolution of CsMPs is similar to that of Si-based glass and is affected by the surface moisture conditions. In addition, the Cs release from the CsMPs is constrained by the rate-limiting dissolution of silicate matrix. Based on our results, CsMPs with ∼2 Bq, which can be potentially inhaled and deposited in the alveolar region, are completely dissolved after >35 years. Further, CsMPs could remain in the environment for several decades; as such, CsMPs are important factors contributing to the long-term impacts of radioactive Cs in the environment.


Assuntos
Radioisótopos de Césio/análise , Monitoramento de Radiação , Poluentes Radioativos da Água/análise , Césio , Acidente Nuclear de Fukushima , Vidro , Japão , Centrais Nucleares , Radioatividade , Água do Mar , Silicatos , Solo , Solubilidade , Água
4.
Sci Rep ; 7: 42731, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198440

RESUMO

The nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 caused partial meltdowns of three reactors. During the meltdowns, a type of condensed particle, a caesium-rich micro-particle (CsMP), formed inside the reactors via unknown processes. Here we report the chemical and physical processes of CsMP formation inside the reactors during the meltdowns based on atomic-resolution electron microscopy of CsMPs discovered near the FDNPP. All of the CsMPs (with sizes of 2.0-3.4 µm) comprise SiO2 glass matrices and ~10-nm-sized Zn-Fe-oxide nanoparticles associated with a wide range of Cs concentrations (1.1-19 wt% Cs as Cs2O). Trace amounts of U are also associated with the Zn-Fe oxides. The nano-texture in the CsMPs records multiple reaction-process steps during meltdown in the severe FDNPP accident: Melted fuel (molten core)-concrete interactions (MCCIs), incorporating various airborne fission product nanoparticles, including CsOH and CsCl, proceeded via SiO2 condensation over aggregates of Zn-Fe oxide nanoparticles originating from the failure of the reactor pressure vessels. Still, CsMPs provide a mechanism by which volatile and low-volatility radionuclides such as U can reach the environment and should be considered in the migration model of Cs and radionuclides in the current environment surrounding the FDNPP.

5.
Sci Rep ; 7(1): 5409, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710475

RESUMO

Highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) provide nano-scale chemical fingerprints of the 2011 tragedy. U, Cs, Ba, Rb, K, and Ca isotopic ratios were determined on three CsMPs (3.79-780 Bq) collected within ~10 km from the FDNPP to determine the CsMPs' origin and mechanism of formation. Apart from crystalline Fe-pollucite, CsFeSi2O6 · nH2O, CsMPs are comprised mainly of Zn-Fe-oxide nanoparticles in a SiO2 glass matrix (up to ~30 wt% of Cs and ~1 wt% of U mainly associated with Zn-Fe-oxide). The 235U/238U values in two CsMPs: 0.030 (±0.005) and 0.029 (±0.003), are consistent with that of enriched nuclear fuel. The values are higher than the average burnup estimated by the ORIGEN code and lower than non-irradiated fuel, suggesting non-uniform volatilization of U from melted fuels with different levels of burnup, followed by sorption onto Zn-Fe-oxides. The nano-scale texture and isotopic analyses provide a partial record of the chemical reactions that occurred in the fuel during meltdown. Also, the CsMPs were an important medium of transport for the released radionuclides in a respirable form.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Centrais Nucleares , Monitoramento de Radiação/métodos , Urânio/análise , Geografia , Vidro/análise , Japão , Poluentes Radioativos/análise , Dióxido de Silício/análise
6.
Sci Total Environ ; 551-552: 155-62, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874771

RESUMO

The migration and dispersion of radioactive Cs (mainly (134)Cs and (137)Cs) are of critical concern in the area surrounding the Fukushima Daiichi Nuclear Power Plant (FDNPP). Considerable uncertainty remains in understanding the properties and dynamics of radioactive Cs transport by surface water, particularly during rainfall-induced flood events to the ocean. Physical and chemical properties of unique estuary sediments, collected from the Kuma River, 4.0km south of the FDNPP, were quantified in this study. These were deposited after storm events and now occur as dried platy sediments on beach sand. The platy sediments exhibit median particle sizes ranging from 28 to 32µm. There is increasing radioactivity towards the bottom of the layers deposited; approximately 28 and 38Bqg(-1) in the upper and lower layers, respectively. The difference in the radioactivity is attributed to a larger number of particles associated with radioactive Cs in the lower part of the section, suggesting that radioactive Cs in the suspended soils transported by surface water has decreased over time. Sequential chemical extractions showed that ~90% of (137)Cs was strongly bound to the residual fraction in the estuary samples, whereas 60~80% of (137)Cs was bound to clays in the six paddy soils. This high concentration in the residual fraction facilitates ease of transport of clay and silt size particles through the river system. Estuary sediments consist of particles <100µm. Radioactive Cs desorption experiments using the estuary samples in artificial seawater revealed that 3.4±0.6% of (137)Cs was desorbed within 8h. More than 96% of (137)Cs remained strongly bound to clays. Hence, particle size is a key factor that determines the travel time and distance during the dispersion of (137)Cs in the ocean.


Assuntos
Radioisótopos de Césio/análise , Estuários , Acidente Nuclear de Fukushima , Sedimentos Geológicos/química , Poluentes Radioativos da Água/análise , Centrais Nucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA