Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gan To Kagaku Ryoho ; 48(2): 170-175, 2021 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-33597352

RESUMO

Fluorescence imaging is a very useful method for visualizing molecules and cells, but when tissues are measured", decrease in resolution due to increased scattering and absorption of light in proportion to tissue thickness (problem 1)" and "decrease in signal to noise(S/N)ratio of positive signal due to tissue autofluorescence(problem 2)"are problems to be solved. In this paper, to develop a technology to improve the analysis accuracy of drug efficacy mechanisms in preclinical trial of drug discovery, we performed development of a supporting technology for drug discovery of antibody drug conjugates by imaging living tumor tissues, while solving problem 1. This technology is expected to lead to an improvement in the success rate of clinical trials. Next, to develop a diagnostic method to predict the response to neoadjuvant chemotherapy with antibody drugs for breast cancer, we performed development of fluorescence imaging of pathological tissues using fluorescent nanoparticles with ultra-high brightness, while solving problem 2. This diagnostic technology makes it possible to evaluate the expression level of the target protein of antibody drug with high quantitative and wide range sensitivity. This improved the accuracy of drug efficacy prediction. Therefore, patients who are expected to have a low drug efficacy will be able to select anticancer drugs with different mechanisms of action. These results of this study showed the reduction of drug discovery costs and improvement of individualized medicine. Thus, this study will greatly contribute to the development of precision medicine.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Anticorpos , Humanos , Imagem Óptica , Tecnologia
2.
Sci Technol Adv Mater ; 17(1): 387-397, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877890

RESUMO

Contrast agents are often used to enhance the contrast of X-ray computed tomography (CT) imaging of tumors to improve diagnostic accuracy. However, because the iodine-based contrast agents currently used in hospitals are of low molecular weight, the agent is rapidly excreted from the kidney or moves to extravascular tissues through the capillary vessels, depending on its concentration gradient. This leads to nonspecific enhancement of contrast images for tissues. Here, we created gold (Au) nanoparticles as a new contrast agent to specifically image tumors with CT using an enhanced permeability and retention (EPR) effect. Au has a higher X-ray absorption coefficient than does iodine. Au nanoparticles were supported with polyethylene glycol (PEG) chains on their surface to increase the blood retention and were conjugated with a cancer-specific antibody via terminal PEG chains. The developed Au nanoparticles were injected into tumor-bearing mice, and the distribution of Au was examined with CT imaging, transmission electron microscopy, and elemental analysis using inductively coupled plasma optical emission spectrometry. The results show that specific localization of the developed Au nanoparticles in the tumor is affected by a slight difference in particle size and enhanced by the conjugation of a specific antibody against the tumor.

3.
Colloids Surf B Biointerfaces ; 203: 111732, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33839472

RESUMO

The technology to accurately image the morphology of tumor vessels with X-ray contrast agents is important to clarify mechanisms underlying tumor progression and evaluate the efficacy of chemotherapy. However, in clinical practice, iodine-based contrast agents present problems such as short blood retention owing to a high clearance ability and insufficient X-ray absorption capacity when compared with other high atomic number elements. To resolve these issues, gold nanoparticles (AuNPs), with a high atomic number, have attracted a great deal of attention as contrast agents for angiography, and have been employed in small animal models. Herein, we developed novel contrast agents using AuNPs and captured changes in tumor vessel morphology with time using X-ray computed tomography (CT). First, glutathione-supported single nanometer-sized AuNPs (sAu/GSH) (diameter, 2.2 nm) were fabricated using tetrakis(hydroxymethyl)phosphonium chloride as a reducing agent. The sAu/GSH particles were intravenously injected into mice, remained in vessels for a few minutes, and were then excreted by the kidneys after 24 h, similar to the commercial contrast agent iopamidol. Next, the Au/GSH and lactoferrin (sAu/GSH-LF) (long axis size, 17.3 nm) complex was produced by adding lactoferrin to the sAu/GSH solution under the influence of a condensing agent. On intravenously administering sAu/GSH-LF to mice, the blood retention time was 1-3 h, which was considerably longer than that observed with iopamidol and sAu/GSH. Moreover, we succeeded in imaging morphological changes in identical tumor vessels for several days using X-ray CT with sAu/GSH-LF.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Vasos Sanguíneos/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Meios de Contraste , Lactoferrina , Camundongos , Tomografia Computadorizada por Raios X
4.
Transl Oncol ; 13(6): 100764, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32403030

RESUMO

Anticancer drug efficacy varies because the delivery of drugs within tumors and tumor responses are heterogeneous; however, these features are often more homogenous in vitro. This difference makes it difficult to accurately determine drug efficacy. Therefore, it is important to use living tumor tissues in preclinical trials to observe the heterogeneity in drug distribution and cell characteristics in tumors. In the present study, to accurately evaluate the efficacy of an antibody-drug conjugate (ADC) containing a microtubule inhibitor, we established a cell line that expresses a fusion of end-binding protein 1 and enhanced green fluorescent protein that serves as a microtubule plus-end-tracking protein allowing the visualization of microtubule dynamics. This cell line was xenografted into mice to create a model of living tumor tissue. The tumor cells possessed a greater number of microtubules with plus-ends, a greater number of meandering microtubules, and a slower rate of microtubule polymerization than the in vitro cells. In tumor tissues treated with fluorescent dye-labeled ADCs, heterogeneity was observed in the delivery of the drug to tumor cells, and microtubule dynamics were inhibited in a concentration-dependent manner. Moreover, a difference in drug sensitivity was observed between in vitro cells and tumor cells; compared with in vitro cells, tumor cells were more sensitive to changes in the concentration of the ADC. This study is the first to simultaneously evaluate the delivery and intracellular efficacy of ADCs in living tumor tissue. Accurate evaluation of the efficacy of ADCs is important for the development of effective anticancer drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA