Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(5): e2213626120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689648

RESUMO

Plasmodium falciparum malaria originated when Plasmodium praefalciparum, a gorilla malaria parasite transmitted by African sylvan anopheline mosquitoes, adapted to humans. Pfs47, a protein on the parasite surface mediates P. falciparum evasion of the mosquito immune system by interacting with a midgut receptor and is critical for Plasmodium adaptation to different anopheline species. Genetic analysis of 4,971 Pfs47 gene sequences from different continents revealed that Asia and Papua New Guinea harbor Pfs47 haplotypes more similar to its ortholog in P. praefalciparum at sites that determine vector compatibility, suggesting that ancestral P. falciparum readily adapted to Asian vectors. Consistent with this observation, Pfs47-receptor gene sequences from African sylvan malaria vectors, such as Anopheles moucheti and An. marshallii, were found to share greater similarity with those of Asian vectors than those of vectors of the African An. gambiae complex. Furthermore, experimental infections provide direct evidence that transformed P. falciparum parasites carrying Pfs47 orthologs of P. praefalciparum or P. reichenowi were more effective at evading the immune system of the Asian malaria vector An. dirus than An. gambiae. We propose that high compatibility of ancestral P. falciparum Pfs47 with the receptors of Asian vectors facilitated the early dispersal of human malaria to the Asian continent, without having to first adapt to sub-Saharan vectors of the An. gambiae complex.


Assuntos
Anopheles , Malária Falciparum , Malária , Plasmodium , Animais , Humanos , Plasmodium falciparum/genética , Anopheles/genética , Mosquitos Vetores/parasitologia , Malária Falciparum/parasitologia , Gorilla gorilla
2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34711682

RESUMO

Immune priming in Anopheles gambiae is mediated by the systemic release of a hemocyte differentiation factor (HDF), a complex of lipoxin A4 bound to Evokin, a lipid carrier. HDF increases the proportion of circulating granulocytes and enhances mosquito cellular immunity. Here, we show that Evokin is present in hemocytes and fat-body cells, and messenger RNA (mRNA) expression increases significantly after immune priming. The double peroxidase (DBLOX) enzyme, present in insects but not in vertebrates, is essential for HDF synthesis. DBLOX is highly expressed in oenocytes in the fat-body tissue, and these cells increase in number in primed mosquitoes. We provide direct evidence that the histone acetyltransferase AgTip60 (AGAP001539) is also essential for a sustained increase in oenocyte numbers, HDF synthesis, and immune priming. We propose that oenocytes may function as a population of cells that are reprogrammed, and orchestrate and maintain a broad, systemic, and long-lasting state of enhanced immune surveillance in primed mosquitoes.


Assuntos
Culicidae/imunologia , Histona Acetiltransferases/metabolismo , Memória Imunológica/imunologia , Animais , Anopheles/imunologia , Anopheles/metabolismo , Culicidae/metabolismo , Feminino , Granulócitos/metabolismo , Hemócitos/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/genética , Insetos/metabolismo , Lipoxinas/metabolismo , Malária/imunologia , Masculino , Peroxidase/metabolismo , Plasmodium/metabolismo , Plasmodium berghei/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(5): 2597-2605, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31969456

RESUMO

The surface protein Pfs47 allows Plasmodium falciparum parasites to survive and be transmitted by making them "undetectable" to the mosquito immune system. P. falciparum parasites express Pfs47 haplotypes compatible with their sympatric vectors, while those with incompatible haplotypes are eliminated by the mosquito. We proposed that Pfs47 serves as a "key" that mediates immune evasion by interacting with a mosquito receptor "the lock," which differs in evolutionarily divergent anopheline mosquitoes. Recombinant Pfs47 (rPfs47) was used to identify the mosquito Pfs47 receptor protein (P47Rec) using far-Western analysis. rPfs47 bound to a single 31-kDa band and the identity of this protein was determined by mass spectrometry. The mosquito P47Rec has two natterin-like domains and binds to Pfs47 with high affinity (17 to 32 nM). P47Rec is a highly conserved protein with submicrovillar localization in midgut cells. It has structural homology to a cytoskeleton-interacting protein and accumulates at the site of ookinete invasion. Silencing P47Rec expression reduced P. falciparum infection, indicating that the interaction of Pfs47 with the receptor is critical for parasite survival. The binding specificity of P47Rec from distant anophelines (Anopheles gambiae, Anopheles dirus, and Anopheles albimanus) with Pfs47-Africa (GB4) and Pfs47-South America (7G8) haplotypes was evaluated, and it is in agreement with the previously documented compatibility between P. falciparum parasites expressing different Pfs47 haplotypes and these three anopheline species. Our findings give further support to the role of Pfs47 in the adaptation of P. falciparum to different vectors.


Assuntos
Anopheles/imunologia , Anopheles/parasitologia , Proteínas de Insetos/imunologia , Glicoproteínas de Membrana/imunologia , Mosquitos Vetores/imunologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Anopheles/genética , Interações Hospedeiro-Parasita , Evasão da Resposta Imune , Proteínas de Insetos/genética , Cinética , Glicoproteínas de Membrana/genética , Mosquitos Vetores/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
4.
Proc Natl Acad Sci U S A ; 114(47): 12566-12571, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114059

RESUMO

A naturally occurring Wolbachia strain (wAnga-Mali) was identified in mosquitoes of the Anopheles gambiae complex collected in the Malian villages of Dangassa and Kenieroba. Phylogenetic analysis of the nucleotide sequence of two 16S rRNA regions showed that wAnga-Mali clusters with Wolbachia strains from supergroup A and has the highest homology to a Wolbachia strain isolated from cat fleas (Ctenocephalides). wAnga-Mali is different from two Wolbachia strains previously reported in A. gambiae from Burkina Faso (wAnga_VK5_STP and wAnga_VK5_3.1a). Quantitative analysis of Wolbachia and Plasmodium sporozoite infection in field-collected mosquitoes indicates that the prevalence and intensity of Plasmodium falciparum sporozoite infection is significantly lower in Wolbachia-infected females. The presence of Wolbachia in females from a laboratory Anopheles coluzzii (A. gambiae, M form) colony experimentally infected with P. falciparum (NF54 strain) gametocyte cultures slightly enhanced oocyst infection. However, Wolbachia infection significantly reduced the prevalence and intensity of sporozoite infection, as observed in the field. This indicates that wAnga-Mali infection does not limit early stages of Plasmodium infection in the mosquito, but it has a strong deleterious effect on sporozoites and reduces malaria transmission.


Assuntos
Anopheles/microbiologia , Interações Hospedeiro-Parasita , Insetos Vetores/microbiologia , Malária Falciparum/transmissão , Plasmodium falciparum/microbiologia , Wolbachia/genética , Animais , Anopheles/parasitologia , Feminino , Interações Hospedeiro-Patógeno , Insetos Vetores/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Mali/epidemiologia , Oocistos/patogenicidade , Oocistos/fisiologia , Filogenia , RNA Ribossômico 16S/genética , Índice de Gravidade de Doença , Esporozoítos/patogenicidade , Esporozoítos/fisiologia , Wolbachia/classificação , Wolbachia/isolamento & purificação
5.
Proc Natl Acad Sci U S A ; 112(5): 1273-80, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25552553

RESUMO

The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system.


Assuntos
Anopheles/imunologia , Apoptose/fisiologia , MAP Quinase Quinase 4/metabolismo , Plasmodium falciparum/fisiologia , Animais , Anopheles/parasitologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia
6.
Proc Natl Acad Sci U S A ; 112(49): 15178-83, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598665

RESUMO

Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed.


Assuntos
Anopheles/imunologia , Evasão da Resposta Imune , Malária Falciparum/transmissão , Plasmodium falciparum/fisiologia , Animais , Anopheles/parasitologia , Insetos Vetores , Dados de Sequência Molecular
7.
Front Med (Lausanne) ; 11: 1342476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808136

RESUMO

Human Immunodeficiency Virus (HIV) remains a global health challenge, and novel approaches to improve HIV control are significantly important. The cell and gene therapy product AGT103-T was previously evaluated (NCT04561258) for safety, immunogenicity, and persistence in seven patients for up to 180 days post infusion. In this study, we sought to investigate the impact of AGT103-T treatment upon analytical treatment interruptions (ATIs). Six patients previously infused with AGT103-T were enrolled into an ATI study (NCT05540964), wherein they suspended their antiretroviral therapy (ART) until their viral load reached 100,000 copies/mL in two successive visits, or their CD4 count was reduced to below 300 cells/µL. During the ATI, all patients experienced viral rebound followed by a notable expansion in HIV specific immune responses. The participants demonstrated up to a five-fold increase in total CD8 counts over baseline approximately 1-2 weeks followed by the peak viremia. This coincided with a rise in HIV-specific CD8 T cells, which was attributed to the increase in antigen availability and memory recall. Thus, the protocol was amended to include a second ATI with the first ATI serving as an "auto-vaccination." Four patients participated in a second ATI. During the second ATI, the Gag-specific CD8 T cells were either maintained or rose in response to viral rebound and the peak viremia was substantially decreased. The patients reached a viral set point ranging from 7,000 copies/mL to 25,000 copies/mL. Upon resuming ART, all participants achieved viral control more rapidly than during the first ATI, with CD4 counts remaining within 10% of baseline measurements and without any serious adverse events or evidence of drug resistance. In summary, the rise in CD8 counts and the viral suppression observed in 100% of the study participants are novel observations demonstrating that AGT103-T gene therapy when combined with multiple ATIs, is a safe and effective approach for achieving viral control, with viral setpoints consistently below 25,000 copies/mL and relatively stable CD4 T cell counts. We conclude that HIV cure-oriented cell and gene therapy trials should include ATI and may benefit from designs that include multiple ATIs when induction of CD8 T cells is required to establish viral control.

8.
J Biol Chem ; 287(31): 26365-76, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22707724

RESUMO

Trypanosoma cruzi is wrapped by a dense coat of mucin-type molecules encoded by complex gene families termed TcSMUG and TcMUC, which are expressed in the insect- and mammal-dwelling forms of the parasite, respectively. Here, we dissect the contribution of distinct post-translational modifications on the trafficking of these glycoconjugates. In vivo tracing and characterization of tagged-variants expressed by transfected epimastigotes indicate that although the N-terminal signal peptide is responsible for targeting TcSMUG products to the endoplasmic reticulum (ER), the glycosyl phosphatidylinositol (GPI)-anchor likely functions as a forward transport signal for their timely progression along the secretory pathway. GPI-minus variants accumulate in the ER, with only a minor fraction being ultimately released to the medium as anchorless products. Secreted products, but not ER-accumulated ones, display several diagnostic features of mature mucin-type molecules including extensive O-type glycosylation, Galf-based epitopes recognized by monoclonal antibodies, and terminal Galp residues that become readily sialylated upon addition of parasite trans-sialidases. Processing of N-glycosylation site(s) is dispensable for the overall TcSMUG mucin-type maturation and secretion. Despite undergoing different O-glycosylation elaboration, TcMUC reporters yielded quite similar results, thus indicating that (i) molecular trafficking signals are structurally and functionally conserved between mucin families, and (ii) TcMUC and TcSMUG products are recognized and processed by a distinct repertoire of stage-specific glycosyltransferases. Thus, using the fidelity of a homologous expression system, we have defined some biosynthetic aspects of T. cruzi mucins, key molecules involved in parasite protection and virulence.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Mucinas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Proteínas Ligadas por GPI/genética , Glicosilação , Dados de Sequência Molecular , Mucinas/genética , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas de Protozoários/genética , Deleção de Sequência
9.
Biochem J ; 444(2): 211-8, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22428617

RESUMO

TSSA (trypomastigote small surface antigen) is a polymorphic mucin-like molecule displayed on the surface of Trypanosoma cruzi trypomastigote forms. To evaluate its functional properties, we undertook comparative biochemical and genetic approaches on isoforms present in parasite stocks from extant evolutionary lineages (CL Brener and Sylvio X-10). We show that CL Brener TSSA, but not the Sylvio X-10 counterpart, exhibits dose-dependent and saturable binding towards non-macrophagic cell lines. This binding triggers Ca(2+)-based signalling responses in the target cell while providing an anchor for the invading parasite. Accordingly, exogenous addition of either TSSA-derived peptides or specific antibodies significantly inhibits invasion of CL Brener, but not Sylvio X-10, trypomastigotes. Non-infective epimastigote forms, which do not express detectable levels of TSSA, were stably transfected with TSSA cDNA from either parasite stock. Although both transfectants produced a surface-associated mucin-like TSSA product, epimastigotes expressing CL Brener TSSA showed a ~2-fold increase in their attachment to mammalian cells. Overall, these findings indicate that CL Brener TSSA functions as a parasite adhesin, engaging surface receptor(s) and inducing signalling pathways on the host cell as a prerequisite for parasite internalization. More importantly, the contrasting functional features of TSSA isoforms provide one appealing mechanism underlying the differential infectivity of T. cruzi stocks.


Assuntos
Trypanosoma cruzi/patogenicidade , Glicoproteínas Variantes de Superfície de Trypanosoma/fisiologia , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Células HEK293 , Humanos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Células Vero
10.
Microbiol Spectr ; 11(6): e0094023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37982627

RESUMO

IMPORTANCE: Malaria transmission by Anopheles gambiae mosquitoes is very effective, in part because the parasite expresses a surface protein called Pfs47 that allows it to evade the mosquito immune system. Here we investigate how this protein changes the response of mosquito midgut epithelial cells to invasion by the parasite. Pfs47 is known to interact with P47Rec, a mosquito midgut receptor. We found that Pf47Rec inhibits caspase-mediated apoptosis by interacting with the Hsc70-3. This disrupts nitration of midgut epithelial cells invaded by the parasite and the release of hemocyte-derived microvesicles, which are critical for effective activation of the mosquito complement system that eliminates the parasite.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Humanos , Plasmodium falciparum , Anopheles/parasitologia , Proteínas de Choque Térmico/metabolismo
11.
Amino Acids ; 42(1): 347-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21170560

RESUMO

In previous studies we characterized arginine transporter genes from Trypanosoma cruzi and Leishmania donovani, the etiological agents of chagas disease and kala azar, respectively, both fatal diseases in humans. Unlike arginine transporters in higher eukaryotes that transport also lysine, these parasite transporters translocate only arginine. This phenomenon prompted us to identify and characterize parasite lysine transporters. Here we demonstrate that LdAAP7 and TcAAP7 encode lysine-specific permeases in L. donovani and T. cruzi, respectively. These two lysine permeases are both members of the large amino acid/auxin permease family and share certain biochemical properties, such as specificity and Km. However, we evidence that LdAAP7 and TcAAP7 differ in their regulation and localization, such differences are likely a reflection of the dissimilar L. donovani and T. cruzi life cycles. Failed attempts to delete both alleles of LdAAP7 support the premise that this is an essential gene that encodes the only lysine permeases expressed in L. donovani promastigotes and T. cruzi epimastigotes, respectively.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Leishmania donovani/metabolismo , Lisina/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Humanos , Leishmania donovani/patogenicidade , Trypanosoma cruzi/patogenicidade
12.
Medicina (B Aires) ; 72(3): 221-6, 2012.
Artigo em Espanhol | MEDLINE | ID: mdl-22763159

RESUMO

The mammalian TOR pathway ("Target Of Rapamycin") is a regulatory protein network involved in a wide range of processes including cell growth and differentiation, providing a functional switch between anabolic and catabolic cell metabolism. Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle with different morphological stages in various hosts. This life cycle implies that parasites have to deal with fluctuations in the extracellular medium that should be detected and counteracted adapting their metabolism. A candidate to be the mediator between the receptors / sensors of the environment and cellular adaptive response is the TOR pathway. In this paper we integrate the bibliographic data of the TOR pathway in trypanosomatids by in silico analysis (computer simulation of biological structures and processes) of the parasite's genome. Possible effectors and processes regulated by this metabolic pathway are also proposed. Given that the information on the mechanisms of signal transduction in trypanosomatids is scarce, we consider the model presented in this work may be a reference for future experimental work.


Assuntos
Doença de Chagas/parasitologia , Serina-Treonina Quinases TOR/genética , Trypanosoma cruzi/genética , Animais , Simulação por Computador , Estágios do Ciclo de Vida , Mamíferos/genética , Redes e Vias Metabólicas , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
Br J Dermatol ; 162(5): 1127-31, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20302576

RESUMO

BACKGROUND: Human skin and scalp hair follicles are both a nonclassical target and an extrapituitary source of prolactin (PRL), which is a potent hair growth modulator. However, how the expression of PRL and PRL receptor (PRLR) is regulated in human skin is unknown. OBJECTIVES: To investigate whether two key stimulators of pituitary PRL secretion, thyrotropin-releasing hormone (TRH) and oestrogen, also regulate cutaneous PRL and PRLR expression. METHODS: Female scalp skin and/or microdissected hair follicles were treated for 6 days in serum-free organ culture with oestrogen (100 nmol L(-1)), TRH (1-10 ng mL(-1), 3-30 nm) or vehicle control. Quantitative immunohistomorphometry of skin and hair follicle sections was complemented with quantitative polymerase chain reaction for PRL and PRLR in cultured hair follicles and/or female human outer root sheath (ORS) keratinocytes. RESULTS: Oestrogen treatment significantly upregulated PRL and PRLR immunoreactivity in selected skin and hair follicle compartments, at the gene and protein level (P < 0.05). TRH significantly increased PRL immunoreactivity and transcription in hair follicles (P < 0.05); however, while it also increased PRLR transcription in hair follicles, it downregulated PRLR immunoreactivity in the hair follicle ORS (P < 0.05). CONCLUSIONS: Our pilot study shows that two key endocrine controls of pituitary PRL secretion, oestrogen and TRH, also regulate PRL and PRLR expression in human skin. This provides novel insights into the regulation of extrapituitary PRL and PRLR expression, and invites exploration of oestrogen and TRH as novel therapeutic agents in the management of skin and hair diseases characterized by aberrant PRLR-mediated signalling.


Assuntos
Estrogênios/farmacologia , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Pele/efeitos dos fármacos , Hormônio Liberador de Tireotropina/farmacologia , Adulto , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Humanos , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Projetos Piloto , Prolactina/genética , Receptores da Prolactina/genética , Pele/metabolismo
14.
Front Microbiol ; 11: 1496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719666

RESUMO

An effective vaccine to reduce malaria transmission is central to control and ultimately achieve disease eradication. Recently, we demonstrated that antibodies targeting the Plasmodium falciparum surface protein P47 (Pfs47) reduce parasite transmission to Anopheles gambiae mosquitoes. Here, Plasmodium berghei (Pb) was used as a model to assess the in vivo efficacy of a P47-targeted transmission blocking vaccine (Pbs47). Mice were immunized following a prime/boost regimen and infected with P. berghei. The effect of immunization on infectivity to mosquitoes was evaluated by direct feeding on P. berghei-infected mice. The key region in Pbs47 where antibody binding confers protection was mapped, and the immunogenicity of this protective antigen was enhanced by conjugation to a virus-like particle. Passive immunization with 100 and 50 µg/mL of anti-Pbs47 IgG reduced oocyst density by 77 and 67%, respectively. Furthermore, affinity purified Pbs47-specific IgG significantly reduced oocyst density by 88 and 77%, respectively at doses as low as 10 and 1 µg/mL. These studies suggest that P47 is a promising transmission blocking target and show that antibodies to the same specific region in Pfs47 and Pbs47 confer protection.

15.
Trends Parasitol ; 36(11): 880-883, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33036937

RESUMO

Malaria eradication is a global priority but requires innovative strategies. Humoral immune responses attack different parasite stages, and antibody-based therapy may prevent malaria infection or transmission. Here, we discuss targets of monoclonal antibodies in mosquito sexual stages of Plasmodium.


Assuntos
Anticorpos Monoclonais/imunologia , Culicidae/parasitologia , Estágios do Ciclo de Vida/imunologia , Malária/prevenção & controle , Malária/transmissão , Plasmodium falciparum/imunologia , Animais , Culicidae/imunologia , Erradicação de Doenças , Humanos , Malária/parasitologia
16.
Benef Microbes ; 11(2): 175-181, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31990221

RESUMO

Studies aiming at the development and evaluation of alternative methods to minimise losses caused by the gastrointestinal nematode Haemonchus contortus are extremely important. Such research is essential, given the high morbidity rates among sheep and the significant mortality rates of lambs, allied to the low efficacy of commercial products for the control of this parasite. The purpose of this study was to evaluate the effect of the Saccharomyces cerevisiae (YT001 - YEASTECH) on the control of H. contortus and its modulation of the immune response in experimentally infected sheep. Eighteen sheep were divided into two groups. Group 1, the control group, comprised animals infected with H. contortus and supplemented with distilled water, while Group 2, the treated group, consisted of animals infected and supplemented with S. cerevisiae (400 million cfu/day of suspension for 49 days). The following parasitological parameters were evaluated: number of eggs per gram of faeces, number of infective larvae (L3) recovered per faecal culture, and parasitic load of the abomasum. The following immunological parameters were quantified: immunoglobulin (Ig)A in the mucous secretions and serum IgG; cytokines interleukin (IL)-4, IL-5 and IL-10; number of eosinophils in the abomasal mucosa and groups of cells positive for the markers: MHCII, CD4+CD25+, CD5+CD8+, WC4, CD5+CD4+, CD8+CD11b+ and CD5+WC1 by whole blood flow cytometry. The results revealed a significant decrease (P<0.05) in the number of larvae and significantly higher serum IgG levels (P<0.05) in the group supplemented with S. cerevisiae. The supplemented animals showed significantly larger numbers of eosinophils (P<0.05), as well as more cells positive for MHCII, CD4+CD25+, CD5+CD8+ than the control animals. This study confirmed the beneficial action of S. cerevisiae on the host immune response to H. contortus, as evidenced mainly by the smaller number of L3 recovered from the faeces of sheep supplemented with S. cerevisiae.


Assuntos
Suplementos Nutricionais/microbiologia , Hemoncose/veterinária , Probióticos/administração & dosagem , Saccharomyces cerevisiae/imunologia , Doenças dos Ovinos/terapia , Ovinos/imunologia , Administração Oral , Animais , Anticorpos Anti-Helmínticos/sangue , Citocinas/imunologia , Eosinófilos/imunologia , Fezes/parasitologia , Hemoncose/imunologia , Hemoncose/terapia , Haemonchus , Interações entre Hospedeiro e Microrganismos/imunologia , Imunoglobulina A/análise , Imunoglobulina G/sangue , Contagem de Leucócitos , Masculino , Contagem de Ovos de Parasitas , Ovinos/parasitologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/parasitologia
17.
Br J Dermatol ; 161(4): 933-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19519832

RESUMO

BACKGROUND: Keratin family proteins are generally accepted as being restricted to epithelial cells. However, several studies have challenged this paradigm by reporting, for example, that melanoma cells can express keratins and that normal human epidermal melanocytes, which derive from the neural crest, express keratin 16 (K16) in situ. OBJECTIVES: We wished to confirm or refute that K16 and/or its intermediate filament partner, keratin 6 (K6), are expressed in normal human epidermal and/or hair follicle melanocytes in situ. METHODS: Cryosections of normal human scalp skin were subjected to highly sensitive double immunohistochemistry with specific antibodies against K16 or K6 and against the melanocyte-specific marker NKI/beteb (gp100). Immunoreactivity (IR) was visualized by conventional light microscopy and confocal fluorescence microscopy. RESULTS: Despite the use of different, high-sensitivity immunostaining methods, stringent positive and negative controls, and monospecific, well-characterized antikeratin antibodies, we could detect neither K16 nor K6 IR within intraepidermal or intrafollicular pigment cells of normal human scalp skin. Instead, NKI/beteb+ cells were found to be intimately embedded in foci of K16+ and/or K6+ keratinocytes, which might create the illusion of keratin expression by these cells. CONCLUSIONS: Human epidermal or hair follicle melanocytes do not express K16 and/or K6 while residing in their natural habitat.


Assuntos
Células Epidérmicas , Folículo Piloso/citologia , Queratina-16/metabolismo , Queratina-6/metabolismo , Melanócitos/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica
18.
Parasitology ; 136(10): 1201-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19631011

RESUMO

Phosphoarginine is a cell energy buffer molecule synthesized by the enzyme arginine kinase. In Trypanosoma cruzi, the aetiological agent of Chagas' disease, 2 different isoforms were identified by data mining, but only 1 was expressed during the parasite life cycle. The digitonin extraction pattern of arginine kinase differed from those obtained for reservosomes, glycosomes and mitochondrial markers, and similar to the cytosolic marker. Immunofluorescence analysis revealed that although arginine kinase is localized mainly in unknown punctuated structures and also in the cytosol, it did not co-localize with any of the subcelular markers. This punctuated pattern has previously been observed in many cytosolic proteins of trypanosomatids. The knowledge of the subcellular localization of phosphagen kinases is a crucial issue to understand their physiological role in protozoan parasites.


Assuntos
Arginina Quinase/isolamento & purificação , Arginina Quinase/metabolismo , Frações Subcelulares/metabolismo , Trypanosoma cruzi/enzimologia , Animais , Arginina Quinase/genética , Biologia Computacional , Digitonina/química , Imunofluorescência , Isoenzimas/metabolismo , Estágios do Ciclo de Vida , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento
19.
Educ Res Int ; 20192019.
Artigo em Inglês | MEDLINE | ID: mdl-32071792

RESUMO

Successful researchers in the biological sciences communicate their work to a global audience and must do so in English to be widely recognized and cited. This applies equally to scientific talks, posters, and published articles; thus, scientific English must be prioritized in nonnative English-speaking (NNES) academic institutions to prepare their trainees for successful careers. Here, we propose strategies for integrating scientific English into PhD programs operating in NNES countries. Many graduate students from NNES countries strive for an international career and encounter English as an important barrier. Based on our own experiences as NNES postdoctoral fellows at a US institution, or as a US mentor of these trainees, we contend that conventional learning processes at home institutions do not sufficiently prioritize scientific English as the medium for regular discussions of laboratory-generated data. Principal investigators, mentors, and supervisors are key in promoting English language usage as a structured component of PhD training. If these stakeholders routinely integrate English training and education within the research laboratory program, graduates will be equipped to pursue international academic careers. The ideas presented here are intended for NNES PhD students (and their mentors) who seek an international scientific career in the biological sciences.

20.
Sci Rep ; 9(1): 16833, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727945

RESUMO

We recently characterized Pfs47, a protein expressed on the surface of sexual stages and ookinetes of Plasmodium falciparum, as a malaria transmission-blocking vaccine (TBV) target. Mice immunization induced antibodies that conferred strong transmission-reducing activity (TRA) at a concentration of 200 µg/mL. Here, we sought to optimize the Pfs47 vaccine to elicit higher titers of high-affinity antibodies, capable of inducing strong TRA at a lower concentration. We report the development and evaluation of a Pfs47-based virus-like particle (VLP) vaccine generated by conjugating our 58 amino acid Pfs47 antigen to Acinetobacter phage AP205-VLP using the SpyCatcher:SpyTag adaptor system. AP205-Pfs47 complexes (VLP-P47) formed particles of ~22 nm diameter that reacted with polyclonal anti-Pfs47 antibodies, indicating that the antigen was accessible on the surface of the particle. Mice immunized with VLP-P47 followed by a boost with Pfs47 monomer induced significantly higher antibody titers, with higher binding affinity to Pfs47, than mice that received two immunizations with either VLP-P47 (VLP-P47/VLP-P47) or the Pfs47 monomer (P47/P47). Purified IgG from VLP-P47/P47 mice had strong TRA (83-98%) at concentrations as low as 5 µg/mL. These results indicate that conjugating the Pfs47 antigen to AP205-VLP significantly enhanced antigenicity and confirm the potential of Pfs47 as a TBV candidate.


Assuntos
Anticorpos Antiprotozoários/metabolismo , Malária Falciparum/prevenção & controle , Glicoproteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Animais , Bacteriófagos/genética , Bacteriófagos/imunologia , Feminino , Imunização Secundária , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Masculino , Camundongos , Vacinas de Partículas Semelhantes a Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA