Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Acoust Soc Am ; 152(2): 1003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36050189

RESUMO

Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.


Assuntos
Benchmarking , Transdutores , Simulação por Computador , Crânio/diagnóstico por imagem , Ultrassonografia/métodos
2.
J Acoust Soc Am ; 150(1): 441, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34340504

RESUMO

The numerical simulation of weakly nonlinear ultrasound is important in treatment planning for focused ultrasound (FUS) therapies. However, the large domain sizes and generation of higher harmonics at the focus make these problems extremely computationally demanding. Numerical methods typically employ a uniform mesh fine enough to resolve the highest harmonic present in the problem, leading to a very large number of degrees of freedom. This paper proposes a more efficient strategy in which each harmonic is approximated on a separate mesh, the size of which is proportional to the wavelength of the harmonic. The increase in resolution required to resolve a smaller wavelength is balanced by a reduction in the domain size. This nested meshing is feasible owing to the increasingly localised nature of higher harmonics near the focus. Numerical experiments are performed for FUS transducers in homogeneous media to determine the size of the meshes required to accurately represent the harmonics. In particular, a fast volume potential approach is proposed and employed to perform convergence experiments as the computation domain size is modified. This approach allows each harmonic to be computed via the evaluation of an integral over the domain. Discretising this integral using the midpoint rule allows the computations to be performed rapidly with the FFT. It is shown that at least an order of magnitude reduction in memory consumption and computation time can be achieved with nested meshing. Finally, it is demonstrated how to generalise this approach to inhomogeneous propagation domains.

3.
Am J Obstet Gynecol ; 221(4): 343.e1-343.e11, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31152712

RESUMO

BACKGROUND: There is mounting evidence that neural memory traces are formed by auditory learning in utero and that premature newborns are particularly sensitive to the intense, sustained noises or impulses sounds associated with the use of intensive care equipment. One area of critical importance is the determination of sound level exposure in utero associated with maternal occupation. The attenuation factors provided by the abdomen and tissue as well as the routes by which the inner ear receives stimulation need careful consideration and investigation to provide prenatal protection from external sound levels and frequencies that may cause harm. OBJECTIVE: To measure how sound from external sound sources is transmitted to the fetus inside the uterus of a pregnant sheep in 6 Hz frequency steps between 100 Hz and 20 kHz (ie, across most of the human audio range). STUDY DESIGN: We measured acoustic transfer characteristics in vivo in 6 time-mated singleton pregnant Romney ewes (gestational age, 103-130 days, weight, 54-74 kg). Under general anesthesia and at hysterotomy, a calibrated hydrophone was attached to the occiput of the fetal head within the amniotic sac. Two calibrated microphones were positioned in the operating theater, close to the head and to the body of each ewe. Initial experiments were carried out on 3 pregnant ewes 3 days after transport recovery to inform the data acquisition protocol. This was followed by detailed data acquisition of 3 pregnant ewes under general anesthesia, using external white noise signals. Voltage signals were acquired with 2 calibrated microphones, located near the head and the body of each ewe and with a calibrated hydrophone located in the amniotic fluid. RESULTS: Measurement of acoustic transmission through the maternal abdominal and uterine walls indicates that frequency contents above 10 kHz are transmitted into the amniotic sac and that some frequencies are attenuated by as little as 3 dB. CONCLUSION: This study provides new data about in utero sound transmission of external noise sources beyond physiological noise (cardiovascular, respiratory, and intestinal sounds), which help quantity the potential for fetal physiological damage resulting from exposure to high levels of noise during pregnancy. Fine-frequency acoustic attenuation characteristics are essential to inform standards and clinical recommendations on exposure of pregnant women to noise. Such transfer functions may also inform the design of filters to produce an optimal acoustic setting for maternal occupational noise exposure, use of magnetic resonance imaging during pregnancy, and for neonatal incubators.


Assuntos
Abdome , Acústica , Líquido Amniótico , Ruído , Útero , Animais , Feminino , Ruído Ocupacional , Gravidez , Lesões Pré-Natais , Ovinos , Carneiro Doméstico , Som
4.
J Acoust Soc Am ; 141(5): 3364, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28599556

RESUMO

This work presents an acoustofluidic device for manipulating coated microbubbles, designed for the simultaneous use of optical and acoustical tweezers. A comprehensive characterization of the acoustic pressure in the device is presented, obtained by the synergic use of different techniques in the range of acoustic frequencies where visual observations showed aggregation of polymer-coated microbubbles. In absence of bubbles, the combined use of laser vibrometry and finite element modelling supported a non-invasive measurement of the acoustic pressure and an enhanced understanding of the system resonances. Calibrated holographic optical tweezers were used for direct measurements of the acoustic forces acting on an isolated microbubble, at low driving pressures, and to confirm the spatial distribution of the acoustic field. This allowed quantitative acoustic pressure measurements by particle tracking, using polystyrene beads, and an evaluation of the related uncertainties. This process facilitated the extension of tracking to microbubbles, which have a negative acoustophoretic contrast factor, allowing acoustic force measurements on bubbles at higher pressures than optical tweezers, highlighting four peaks in the acoustic response of the device. Results and methodologies are relevant to acoustofluidic applications requiring a precise characterization of the acoustic field and, in general, to biomedical applications with microbubbles or deformable particles.

5.
J Acoust Soc Am ; 138(5): 2726-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26627749

RESUMO

High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive treatment of cancer. For HIFU therapies of, e.g., liver cancer, one of the main challenges is the accurate focusing of the acoustic field inside a ribcage. Computational methods can play an important role in the patient-specific planning of these transcostal HIFU treatments. This requires the accurate modeling of acoustic scattering at ribcages. The use of a boundary element method (BEM) is an effective approach for this purpose because only the boundaries of the ribs have to be discretized instead of the standard approach to model the entire volume around the ribcage. This paper combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton-Miller formulation is used in combination with preconditioning and matrix compression techniques. In particular, quick convergence is achieved with the operator preconditioner that has been designed with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis.

6.
J Clin Med ; 12(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37685652

RESUMO

Liver disease is increasing in incidence and is the third most common cause of premature death in the United Kingdom and fourth in the United States. Liver disease accounts for 2 million deaths globally each year. Three-quarters of patients with liver disease are diagnosed at a late stage, with liver transplantation as the only definitive treatment. Thomas E. Starzl performed the first human liver transplant 60 years ago. It has since become an established treatment for end-stage liver disease, both acute and chronic, including metabolic diseases and primary and, at present piloting, secondary liver cancer. Advances in surgical and anaesthetic techniques, refined indications and contra-indications to transplantation, improved donor selection, immunosuppression and prognostic scoring have allowed the outcomes of liver transplantation to improve year on year. However, there are many limitations to liver transplantation. This review describes the milestones that have occurred in the development of liver transplantation, the current limitations and the ongoing research aimed at overcoming these challenges.

7.
Bioengineering (Basel) ; 10(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36829770

RESUMO

Introduction: Allogenic hepatocyte transplantation is an attractive alternative to whole-organ transplantation, particularly for the treatment of metabolic disorders and acute liver failure. However, the shortage of human donor organs for cell isolation, the low cell yield from decellularisation regimes, and low engraftment rates from portal administration of donor cells have restricted its clinical application. Using ultrasound histotripsy to provide a nidus in the liver for direct cell transplantation offers a new approach to overcoming key limitations in current cell therapy. We have analysed the liver cavity constituents to assess their potential as a site for cell delivery and implantation. Methods: Using human organ retrieval techniques, pig livers were collected from the abattoir and transported in ice-cold storage to the laboratory. Following 2 h of cold storage, the livers were flushed with organ preservation solution and placed on an organ perfusion circuit to maintain viability. Organs were perfused with Soltran™ organ preservation solution via the portal vein at a temperature of 24-30 °C. The perfusion circuit was oxygenated through equilibration with room air. Perfused livers (n=5) were subjected to ultrasound histotripsy, producing a total of 130 lesions. Lesions were generated by applying 50 pulses at 1 Hz pulse repetition frequency and 1% duty cycle using a single element 2 MHz bowl-shaped transducer (Sonic Concepts, H-148). Following histotripsy, a focal liver lesion was produced, which had a liquid centre. The fluid from each lesion was aspirated and cultured in medium (RPMI) at 37 °C in an incubator. Cell cultures were analysed at 1 and 7 days for cell viability and a live-dead assay was performed. The histotripsy sites were excised following aspiration and H&E staining was used to characterise the liver lesions. Cell morphology was determined by histology. Results: Histotripsy created a subcapsular lesion (~5 mm below the liver capsule; size ranging from 3 to 5 mm), which contained a suspension of cells. On average, 61×104 cells per mL were isolated. Hepatocytes were present in the aspirate, were viable at 24 h post isolation and remained viable in culture for up to 1 week, as determined by phalloidin/DAPI cell viability stains. Cultures up to 21 days revealed metabolically active live hepatocyte. Live-dead assays confirmed hepatocyte viability at 1 week (Day 1: 12% to Day 7: 45% live cells; p < 0.0001), which retained metabolic activity and morphology, confirmed on assay and microscopy. Cell Titre-GloTM showed a peak metabolic activity at 1 week (average luminescence 24.6 RLU; p < 0.0001) post-culture compared with the control (culture medium alone), reduced to 1/3 of peak level (7.85 RLU) by day 21. Conclusions: Histotripsy of the liver allows isolation and culture of hepatocytes with a high rate of viability after 1 week in culture. Reproducing these findings using human livers may lead to wide clinical applications in cell therapy.

8.
Bioengineering (Basel) ; 10(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978669

RESUMO

Non-invasive therapeutic-focused ultrasound (US) can be used for the mechanical dissociation of tissue and is described as histotripsy. We have performed US histotripsy in viable perfused ex vivo porcine livers as a step in the development of a novel approach to hepatocyte cell transplantation. The histotripsy nidus was created with a 2 MHz single-element focused US transducer, producing 50 pulses of 10 ms duration, with peak positive and negative pressure values of P+ = 77.7 MPa and P- = -13.7 MPaat focus, respectively, and a duty cycle of 1%. Here, we present the histological analysis, including 3D reconstruction of histotripsy sites. Five whole porcine livers were retrieved fresh from the abattoir using human transplant retrieval and cold static preservation techniques and were then perfused using an organ preservation circuit. Whilst under perfusion, histotripsy was performed to randomly selected sites on the live. Fifteen lesional sites were formalin-fixed and paraffin-embedded. Sections were stained with Haematoxylin and Eosin and picro-Sirius red, and they were also stained for reticulin. Additionally, two lesion sites were used for 3D reconstruction. The core of the typical lesion consisted of eosinophilic material associated with reticulin loss, collagen damage including loss of birefringence to fibrous septa, and perilesional portal tracts, including large portal vein branches, but intact peri-lesional hepatic plates. The 3D reconstruction of two histotripsy sites was successful and confirmed the feasibility of this approach to investigate the effects of histotripsy on tissue in detail.

9.
Ultrason Sonochem ; 70: 105312, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32866882

RESUMO

Boiling histotripsy is a High Intensity Focused Ultrasound (HIFU) technique which uses a number of short pulses with high acoustic pressures at the HIFU focus to induce mechanical tissue fractionation. In boiling histotripsy, two different types of acoustic cavitation contribute towards mechanical tissue destruction: a boiling vapour bubble and cavitation clouds. An understanding of the mechanisms underpinning these phenomena and their dynamics is therefore paramount to predicting and controlling the overall size of a lesion produced for a given boiling histotripsy exposure condition. A number of studies have shown the effects of shockwave heating in generating a boiling bubble at the HIFU focus and have studied its dynamics under boiling histotripsy insonation. However, not much is known about the subsequent production of cavitation clouds that form between the HIFU transducer and the boiling bubble. The main objective of the present study is to examine what causes this bubble cluster formation after the generation of a boiling vapour bubble. A numerical simulation of 2D nonlinear wave propagation with the presence of a bubble at the focus of a HIFU field was performed using the k-Wave MATLAB toolbox for time domain ultrasound simulations, which numerically solves the generalised Westervelt equation. The numerical results clearly demonstrate the appearance of the constructive interference of a backscattered shockwave by a bubble with incoming incident shockwaves. This interaction (i.e., the reflected and inverted peak positive phase from the bubble with the incoming incident rarefactional phase) can eventually induce a greater peak negative pressure field compared to that without the bubble at the HIFU focus. In addition, the backscattered peak negative pressure magnitude gradually increased from 17.4 MPa to 31.6 MPa when increasing the bubble size from 0.2 mm to 1.5 mm. The latter value is above the intrinsic cavitation threshold of -28 MPa in soft tissue. Our results suggest that the formation of a cavitation cloud in boiling histotripsy is a threshold effect which primarily depends (a) the size and location of a boiling bubble, and (b) the sum of the incident field and that scattered by a bubble.

10.
Ultrason Sonochem ; 53: 164-177, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30686603

RESUMO

In boiling histotripsy, the presence of a boiling vapour bubble and understanding of its dynamic behaviour are crucially important for the initiation of the tissue fractionation process and for the control of the size of a lesion produced. Whilst many in vivo studies have shown the feasibility of using boiling histotripsy in mechanical fractionation of solid tumours, not much is known about the evolution of a boiling vapour bubble in soft tissue induced by boiling histotripsy. The main objective of this present study is therefore to investigate the formation and dynamic behaviour of a boiling vapour bubble which occurs under boiling histotripsy insonation. Numerical and experimental studies on the bubble dynamics induced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0 MHz High Intensity Focused Ultrasound (HIFU) transducer were performed with a high speed camera. The Gilmore-Zener bubble model coupled with the Khokhlov-Zabolotskaya-Kuznetsov and the Bio-heat Transfer equations was used to simulate bubble dynamics driven by boiling histotripsy waveforms (nonlinear-shocked wave excitation) in a viscoelastic medium as functions of surrounding temperature and of tissue elasticity variations. In vivo animal experiments were also conducted to examine cellular structures around a freshly created lesion in the liver resulting from boiling histotripsy. To the best of our knowledge, this is the first study reporting the numerical and experimental evidence of the appearance of rectified bubble growth in a viscoelastic medium. Accounting for tissue phantom elasticity adds a mechanical constraint on vapour bubble growth, which improves the agreement between the simulation and the experimental results. In addition the numerical calculations showed that the asymmetry in a shockwave and water vapour transport can result in rectified bubble growth which could be responsible for HIFU-induced tissue decellularisation. Strain on liver tissue induced by this radial motion can damage liver tissue while preserving blood vessels.

11.
Ultrasound Med Biol ; 44(12): 2673-2696, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30228043

RESUMO

Boiling histotripsy is a non-invasive, cavitation-based ultrasonic technique which uses a number of millisecond pulses to mechanically fractionate tissue. Though a number of studies have demonstrated the efficacy of boiling histotripsy for fractionation of solid tumours, treatment monitoring by cavitation measurement is not well studied because of the limited understanding of the dynamics of bubbles induced by boiling histotripsy. The main objectives of this work are to (a) extract qualitative and quantitative features of bubbles excited by shockwaves and (b) distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion in the liver. A numerical bubble model based on the Gilmore equation accounting for heat and mass transfer (gas and water vapour) was developed to investigate the dynamics of a single bubble in tissue exposed to different High Intensity Focused Ultrasound fields as a function of temperature variation in the fluid. Furthermore, ex vivo liver experiments were performed with a passive cavitation detection system to obtain acoustic emissions. The numerical simulations showed that the asymmetry in a shockwave and water vapour transport are the key parameters which lead the bubble to undergo rectified growth at a boiling temperature of 100°C. The onset of rectified radial bubble motion manifested itself as (a) an increase in the radiated pressure and (b) the sudden appearance of higher order multiple harmonics in the corresponding spectrogram. Examining the frequency spectra produced by the thermal ablation and the boiling histotripsy exposures, it was observed that higher order multiple harmonics as well as higher levels of broadband emissions occurred during the boiling histotripsy insonation. These unique features in the emitted acoustic signals were consistent with the experimental measurements. These features can, therefore, be used to monitor (a) the different types of acoustic cavitation activity for either a thermal ablation or a mechanical fractionation process and (b) the onset of the formation of a boiling bubble at the focus in the course of HIFU exposure.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Fígado/cirurgia , Microbolhas , Animais , Galinhas , Modelos Animais
12.
Artigo em Inglês | MEDLINE | ID: mdl-18051166

RESUMO

This paper describes a new thermally based method of monitoring acoustic output power generated by ultrasonic transducers. Its novelty lies in the exploitation of the pyroelectric properties of a thin membrane of polyvinylidene fluoride (PVDF). The membrane is backed by a thick layer of polyurethane rubber that is extremely attenuating to ultrasound, with the result that the majority of the applied acoustic power is absorbed within a few millimeters of the membrane-backing interface. Through the resultant rapid increase in temperature of the membrane, a voltage is generated across its electrodes whose magnitude is proportional to the rate of change of temperature with respect to time. Changes in the pyroelectric voltage generated by switching the transducer ON and OFF are related to the acoustic power delivered by the transducer. Features of the technique are explored through the development of a simple one-dimensional model. An experimental evaluation of the potential secondary measurement technique is also presented, covering the frequency range 1 to 5 MHz, for delivered powers up to a watt. Predictions of the sensor output signals, as well as the frequency dependent sensitivity, are in good agreement with observation. The potential of the new method as a simple, rapid means of providing traceable ultrasonic power measurements is outlined.


Assuntos
Desenho Assistido por Computador , Análise de Falha de Equipamento/instrumentação , Radiometria/instrumentação , Transdutores , Ultrassonografia/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Modelos Teóricos , Projetos Piloto , Doses de Radiação , Radiometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia/métodos
13.
Ultrasound Med Biol ; 43(12): 2848-2861, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28965719

RESUMO

The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Temperatura de Transição , Géis , Imagens de Fantasmas
14.
Artigo em Inglês | MEDLINE | ID: mdl-27824571

RESUMO

The response of a resonant chain of spheres to changes in holder material and precompression is studied at ultrasonic frequencies. The system is found to be very sensitive to these parameters, with the creation of impulsive waveforms from a narrow bandwidth input seen only for certain chain lengths and holder materials. In addition, careful experiments were performed using known amounts of precompression force, using a calibrated stylus arrangement. At negligible precompression levels, impulses were generated within the chain, which were then suppressed by increased precompression. This was accompanied by large changes in the propagation velocity as the system gradually changes from being strongly nonlinear to being more linear. Simulations using a discrete model for the motion of each sphere agree well with the experimental data.

15.
Ultrasonics ; 43(5): 321-30, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15737382

RESUMO

This paper describes a theoretical study of the way in which a circular aperture placed in front of a plane-piston modifies the ultrasonic field it generates. Specifically, the radiated acoustic power transmitted by the aperture and the radiation force experienced by an absorbing target placed in the transmitted beam, are evaluated at a distance from the exit-side of the aperture. The calculations used a finite element (FE) method, in conjunction with a surface Helmholtz integral formulation to solve the fluid/structure interaction problem. The PAFEC (Program for Automatic Finite Element Computation) vibroacoustics software was used for the FE calculations and the implementation of the surface Helmholtz integral formulation method. Acoustic pressures and particle velocities were computed at required points, whilst accounting for the presence of the aperture in the medium, together with its dynamic properties when subjected to an incident sound field. This enabled the calculation of the radiation force on the absorber and its variation with the applied aperture diameter was investigated. As part of the validation process for the new FE aperture model, the ratio of radiation force to radiated acoustic power obtained using the FE method in the unapertured case, through the use of the Rayleigh integral, yielded good agreement with results obtained through an analytical solution. The study has been carried out to provide a better understanding of the factors affecting the measurement uncertainty for the aperture method of determining the effective radiating area (A(ER)) of physiotherapy ultrasound treatment heads.


Assuntos
Modalidades de Fisioterapia , Terapia por Ultrassom/métodos , Acústica , Análise de Elementos Finitos , Humanos , Transdutores
16.
Ultrasonics ; 43(5): 331-41, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15737383

RESUMO

This paper presents a theoretical model describing the transfer characteristics of a bilaminar polyvinylidene fluoride membrane hydrophone. The model applied uses a matrix formulation for one-dimensional propagation in multi-layered media. Arbitrary interconnections of piezoelectric layers are possible. The electrical transfer characteristics of the hydrophone leg and cable are modelled as transmission lines using a two-port network approach. The model is validated against measured open-circuit sensitivities for a 25 microm film thickness 0.5 mm active element diameter bilaminar hydrophone (50 microm total film thickness). Good agreement between theory and experiment is demonstrated. A 9 microm film thickness 0.5 mm active element diameter bilaminar hydrophone (18 microm total film thickness) together with amplifier is also modelled. The voltage at the output stage of the amplifier is measured and, by knowledge of the transfer characteristics of the complete system, the pressure waveform at the hydrophone position is estimated and compared with the acoustic pressure waveform derived using a laser interferometer. Good agreement is obtained.


Assuntos
Membranas Artificiais , Modelos Teóricos , Ultrassonografia/instrumentação , Acústica , Desenho de Equipamento , Polivinil
17.
Ultrasound Med Biol ; 41(3): 832-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25683223

RESUMO

Total acoustic output power is an important parameter required by standards for most ultrasonic medical equipment including high-intensity focused ultrasound (HIFU) systems. Radiation force balances are routinely used; however, radiation force is not strictly dependent on the ultrasound power but, rather, on the wave momentum resolved in one direction. Consequently, measurements based on radiation force become progressively less accurate as the ultrasound wave deviates further from a true plane wave. HIFU transducers can be very strongly focused with F-numbers less than one: under these conditions, the uncertainty associated with use of the radiation force method becomes very significant. International Standards IEC 61161 and IEC 62555 suggest plane-wave correction factors for unfocused transducers radiating onto an ideal absorbing target and focusing corrections for focused transducers radiating onto ideal absorbing targets and onto conical reflecting targets (IEC 61161). Previous models have relied on calculations based on the Rayleigh integral, which is not strictly correct for curved sources. In the work described here, an approach combining finite element methods with a discretization of the Helmholtz equation was developed, making it possible to model the boundary condition at the structure/fluid interface more correctly. This has been used to calculate the relationship between radiation force and total power for both absorbing and conical reflecting targets for transducers ranging from planar to an F-number of 0.5 (hemispherical) and to compare with the recommendations of IEC 61161 and IEC 62555.


Assuntos
Acústica/instrumentação , Transdutores/normas , Terapia por Ultrassom/instrumentação , Calibragem , Análise de Elementos Finitos , Modelos Teóricos , Temperatura
18.
Artigo em Inglês | MEDLINE | ID: mdl-14609074

RESUMO

This paper describes a new concept for an ultrasonic cavitation sensor designed specifically for monitoring acoustic emissions generated by small microbubbles when driven by an applied acoustic field. Its novel features include a hollow, open-ended, cylindrical shape, with the sensor being a right circular cylinder of height 32 mm and external diameter 38 mm. The internal diameter of the sensor is 30 mm; its inner surface is fabricated from a 110-microm layer of piezoelectrically active film whose measurement bandwidth is sufficient to enable acoustic emissions up to and beyond 10 MHz to be monitored. When in use, the sensor is immersed within the liquid test medium and high frequency (megahertz) acoustic emissions occurring within the hollow body of the sensor are monitored. In order to shield the sensor response from events occurring outside the cylinder, the outer surface of the sensor cylinder is encapsulated within a special 4-mm thick polyurethane-based cavitation shield with acoustic properties specifically developed to be minimally perturbing to the 40 kHz applied acoustic field but attenuating to ultrasound generated at megahertz frequencies (plane-wave transmission loss > 30 dB at 1 MHz). This paper introduces the rationale behind the new sensor, describing details of its construction and the materials formulation program undertaken to develop the cavitation shield.

19.
Artigo em Inglês | MEDLINE | ID: mdl-14609075

RESUMO

This paper describes a series of experimental studies to evaluate the performance of newly developed sensors for monitoring broadband acoustic emissions generated by acoustic cavitation. The prototype sensors are fabricated in the form of hollow, open-ended cylinders, whose inner surface is made from a thin film of piezoelectric polymer acting as a passive acoustic receiver of bandwidth greater than 10 MHz. A 4-mm thick coating of special acoustical absorber forms the outer surface of the sensor. The layer functions as a shield to cavitation events occurring outside the hollow sensor body, allowing megahertz acoustic emissions emanating from within the liquid contained in the sensor to be monitored. Testing of the new sensor concept has been carried out within the cavitating field provided by a commercial ultrasonic cleaning vessel operating at 40 kHz whose power output is rated at 1 kW. It is demonstrated that the prototype cavitation sensors are able to record a systematic increase in the level of the high-frequency acoustic spectrum (> 1 MHz) as electrical power to the cleaning vessel is increased. Through careful control of the experimental conditions, reproducibility of the high frequency "energy" associated with the cavitation spectrum was found to be typically +25%.

20.
Artigo em Inglês | MEDLINE | ID: mdl-24803021

RESUMO

Enhancements to the existing primary standard optical interferometer and narrowband tone-burst comparison calibration methods for miniature medical ultrasonic hydrophones of the membrane type over the frequency range 100 to 500 kHz are described. Improvements were realized through application of an ultrasonically absorbing waveguide made of a low-frequency-absorbing tile used in sonar applications which narrows the spatial extent of the broad acoustic field. The waveguide was employed in conjunction with a sonar multilayered polyvinylidene difluoride (PVDF) hydrophone used as a transmitting transducer covering a frequency range of 100 kHz to 1 MHz. The acoustic field emanating from the ultrasonically absorbing waveguide reduced the significance of diffracted acoustic waves from the membrane hydrophone ring and the consequent interference of this wave with the direct acoustic wave received by the active element of the hydrophone during calibration. Four membrane hydrophone make/ models with ring sizes (defined as the inner diameter of the annular mounting ring of the hydrophone) in the range 50 to 100 mm were employed along with a needle hydrophone. A reference membrane hydrophone, calibrated using the NPL primary standard optical interferometer in combination with the ultrasonically absorbing waveguide, was subsequently used to calibrate the other four hydrophones by comparison, again using the ultrasonically absorbing waveguide. In comparison to existing methods, the use of the ultrasonically absorbing waveguide enabled the low-frequency calibration limit of a membrane hydrophone with a ring diameter of 50 mm to be reduced from 400 kHz to 200 kHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA