RESUMO
Cassava brown streak disease (CBSD), dubbed the "Ebola of plants", is a serious threat to food security in Africa caused by two viruses of the family Potyviridae: cassava brown streak virus (CBSV) and Ugandan (U)CBSV. Intriguingly, U/CBSV, along with another member of this family and one secoviridae, are the only known RNA viruses encoding a protein of the Maf/ham1-like family, a group of widespread pyrophosphatase of non-canonical nucleotides (ITPase) expressed by all living organisms. Despite the socio-economic impact of CDSD, the relevance and role of this atypical viral factor has not been yet established. Here, using an infectious cDNA clone and reverse genetics, we demonstrate that UCBSV requires the ITPase activity for infectivity in cassava, but not in the model plant Nicotiana benthamiana. HPLC-MS/MS experiments showed that, quite likely, this host-specific constraint is due to an unexpected high concentration of non-canonical nucleotides in cassava. Finally, protein analyses and experimental evolution of mutant viruses indicated that keeping a fraction of the yielded UCBSV ITPase covalently bound to the viral RNA-dependent RNA polymerase (RdRP) optimizes viral fitness, and this seems to be a feature shared by the other members of the Potyviridae family expressing Maf/ham1-like proteins. All in all, our work (i) reveals that the over-accumulation of non-canonical nucleotides in the host might have a key role in antiviral defense, and (ii) provides the first example of an RdRP-ITPase partnership, reinforcing the idea that RNA viruses are incredibly versatile at adaptation to different host setups.
Assuntos
Manihot , Potyviridae , Manihot/genética , Nucleotídeos , Doenças das Plantas , Potyviridae/genética , Pirofosfatases , RNA Viral/análise , RNA Viral/genética , RNA Polimerase Dependente de RNA , Espectrometria de Massas em TandemRESUMO
Online breath analysis is an attractive approach to track exhaled compounds without sample preparation. Current commercially available real-time breath analysis platforms require the purchase of a full mass spectrometer. Here we present an ion source compatible with virtually any preexisting atmospheric pressure ionization mass spectrometer that allows real-time analysis of breath. We illustrate the capabilities of such technological development by upgrading an orbitrap mass spectrometer. As a result, we detected compounds in exhaled breath between 70 and 900 Da, with a mass accuracy of typically <1 ppm; resolutions between m/Δm 22,000 and 70,000 and fragmentation capabilities. The setup was tested in a pilot study, comparing the breath of smokers (n = 9) and non-smokers (n = 10). Exogenous compounds associated to smoking, as well as endogenous metabolites suggesting increased oxidative stress in smokers, were detected and in some cases identified unambiguously. Most of these compounds correlated significantly with smoking frequency and allowed accurate discrimination of smokers and non-smokers.