RESUMO
The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO2 concentrations depends on soil nutrient availability1,2. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO2 (refs. 3-6), but uncertainty about ecosystem P cycling and its CO2 response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change7. Here, by compiling the first comprehensive P budget for a P-limited mature forest exposed to elevated CO2, we show a high likelihood that P captured by soil microorganisms constrains ecosystem P recycling and availability for plant uptake. Trees used P efficiently, but microbial pre-emption of mineralized soil P seemed to limit the capacity of trees for increased P uptake and assimilation under elevated CO2 and, therefore, their capacity to sequester extra C. Plant strategies to stimulate microbial P cycling and plant P uptake, such as increasing rhizosphere C release to soil, will probably be necessary for P-limited forests to increase C capture into new biomass. Our results identify the key mechanisms by which P availability limits CO2 fertilization of tree growth and will guide the development of Earth system models to predict future long-term C storage.
Assuntos
Dióxido de Carbono , Sequestro de Carbono , Florestas , Fósforo , Microbiologia do Solo , Árvores , Biomassa , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Fósforo/metabolismo , Rizosfera , Solo/química , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Mudança ClimáticaRESUMO
Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.
Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Biomassa , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Aquecimento Global/prevenção & controle , Modelos Biológicos , New South Wales , Fotossíntese , Solo/química , Árvores/crescimento & desenvolvimentoRESUMO
Ribosome profiling experiments support the translation of a range of novel human open reading frames. By contrast, most peptides from large-scale proteomics experiments derive from just one source, 5' untranslated regions. Across the human genome we find evidence for 192 translated upstream regions, most of which would produce protein isoforms with extended N-terminal ends. Almost all of these N-terminal extensions are from highly abundant genes, which suggests that the novel regions we detect are just the tip of the iceberg. These upstream regions have characteristics that are not typical of coding exons. Their GC-content is remarkably high, even higher than 5' regions in other genes, and a large majority have non-canonical start codons. Although some novel upstream regions have cross-species conservation - five have orthologues in invertebrates for example - the reading frames of two thirds are not conserved beyond simians. These non-conserved regions also have no evidence of purifying selection, which suggests that much of this translation is not functional. In addition, non-conserved upstream regions have significantly more peptides in cancer cell lines than would be expected, a strong indication that an aberrant or noisy translation initiation process may play an important role in translation from upstream regions.
Assuntos
Regiões 5' não Traduzidas , Biossíntese de Proteínas , Humanos , Códon de Iniciação/genética , Composição de Bases , Genoma Humano , Animais , Fases de Leitura Aberta/genética , Sequência Conservada , Peptídeos/genética , Peptídeos/metabolismoRESUMO
RegulonDB is a database that contains the most comprehensive corpus of knowledge of the regulation of transcription initiation of Escherichia coli K-12, including data from both classical molecular biology and high-throughput methodologies. Here, we describe biological advances since our last NAR paper of 2019. We explain the changes to satisfy FAIR requirements. We also present a full reconstruction of the RegulonDB computational infrastructure, which has significantly improved data storage, retrieval and accessibility and thus supports a more intuitive and user-friendly experience. The integration of graphical tools provides clear visual representations of genetic regulation data, facilitating data interpretation and knowledge integration. RegulonDB version 12.0 can be accessed at https://regulondb.ccg.unam.mx.
Assuntos
Bases de Dados Genéticas , Escherichia coli K12 , Regulação Bacteriana da Expressão Gênica , Biologia Computacional/métodos , Escherichia coli K12/genética , Internet , Transcrição GênicaRESUMO
Type IV pilus (TFP) is a multifunctional bacterial structure involved in twitching motility, adhesion, biofilm formation, as well as natural competence. Here, by site-directed mutagenesis and functional analysis, we determined the phenotype conferred by each of the 38 genes known to be required for TFP biosynthesis and regulation in the reemergent plant pathogenic fastidious prokaryote Xylella fastidiosa. This pathogen infects > 650 plant species and causes devastating diseases worldwide in olives, grapes, blueberries, and almonds, among others. This xylem-limited, insect-transmitted pathogen lives constantly under flow conditions and therefore is highly dependent on TFP for host colonization. In addition, TFP-mediated natural transformation is a process that impacts genomic diversity and environmental fitness. Phenotypic characterization of the mutants showed that ten genes were essential for both movement and natural competence. Interestingly, seven sets of paralogs exist, and mutations showed opposing phenotypes, indicating evolutionary neofunctionalization of subunits within TFP. The minor pilin FimT3 was the only protein exclusively required for natural competence. By combining approaches of molecular microbiology, structural biology, and biochemistry, we determined that the minor pilin FimT3 (but not the other two FimT paralogs) is the DNA receptor in TFP of X. fastidiosa and constitutes an example of neofunctionalization. FimT3 is conserved among X. fastidiosa strains and binds DNA non-specifically via an electropositive surface identified by homolog modeling. This protein surface includes two arginine residues that were exchanged with alanine and shown to be involved in DNA binding. Among plant pathogens, fimT3 was found in ~ 10% of the available genomes of the plant associated Xanthomonadaceae family, which are yet to be assessed for natural competence (besides X. fastidiosa). Overall, we highlight here the complex regulation of TFP in X. fastidiosa, providing a blueprint to understand TFP in other bacteria living under flow conditions.
Assuntos
Proteínas de Fímbrias , Fímbrias Bacterianas , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Movimento , Mutação , Doenças das Plantas/microbiologiaRESUMO
Misfolded Aß is involved in the progression of Alzheimer's disease (AD). However, the role of its polymorphic variants or conformational strains in AD pathogenesis is not fully understood. Here, we study the seeding properties of two structurally defined synthetic misfolded Aß strains (termed 2F and 3F) using in vitro and in vivo assays. We show that 2F and 3F strains differ in their biochemical properties, including resistance to proteolysis, binding to strain-specific dyes, and in vitro seeding. Injection of these strains into a transgenic mouse model produces different pathological features, namely different rates of aggregation, formation of different plaque types, tropism to specific brain regions, differential recruitment of Aß40 /Aß42 peptides, and induction of microglial and astroglial responses. Importantly, the aggregates induced by 2F and 3F are structurally different as determined by ssNMR. Our study analyzes the biological properties of purified Aß polymorphs that have been characterized at the atomic resolution level and provides relevant information on the pathological significance of misfolded Aß strains.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , ProteóliseRESUMO
GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.
Assuntos
Biologia Computacional , Genoma Humano , Humanos , Animais , Camundongos , Anotação de Sequência Molecular , Biologia Computacional/métodos , Genoma Humano/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Bases de Dados GenéticasRESUMO
Aqueous-phase postsynthetic modifications of the industrially important Y-type zeolite are commonly used to change overall acid site concentrations, introduce stabilizing rare-earth cations, impart bifunctional character through metal cation exchange, and tailor the distribution of Brønsted and Lewis acid sites. Zeolite Y is known to undergo framework degradation in the presence of both vapor- and liquid-phase water at temperatures exceeding 100 °C, and rare-earth exchanged and stabilized HY catalysts are commonly used for fluidized catalytic cracking due to their increased hydrothermal resilience. Here, using detailed spectroscopy, crystallography, and flow-reactor experiments, we reveal unexpected decreases in Brønsted acid site (BAS) density for zeolite HY following exposure even to room-temperature liquid water. These data indicate that aqueous-phase ion-exchange procedures commonly used to modify zeolite Y are impacted by the liquid water and its removal, even when fractional heating rates and inert conditions much less severe than standard practice are used for catalyst dehydration. X-ray diffraction, thermogravimetric, and spectroscopic analyses reveal that the majority of framework degradation occurs during the removal of a strongly bound water fraction in HY, which does not form when NH4Y is immersed in liquid water and which leads to reduced acidity in HY even when dehydration conditions much milder than those typically practiced are employed. Na+-exchanged HY prepared via room-temperature aqueous dissolution demonstrates that Brønsted acid sites are lost in excess of the theoretical maximum that is possible from sodium titration. The structural impact of low-temperature aqueous-phase ion-exchange methods complicates the interpretation of subsequent data and likely explains the wide variation in reported acid site concentrations and catalytic activity of HY zeolites with high-Al content.
RESUMO
Amyotrophic Lateral Sclerosis (ALS) is a multisystemic neurodegenerative disorder, with accumulating evidence indicating metabolic disruptions in the skeletal muscle preceding disease symptoms, rather than them manifesting as a secondary consequence of motor neuron (MN) degeneration. Hence, energy homeostasis is deeply implicated in the complex physiopathology of ALS and skeletal muscle has emerged as a key therapeutic target. Here, we describe intrinsic abnormalities in ALS skeletal muscle, both in patient-derived muscle cells and in muscle cell lines with genetic knockdown of genes related to familial ALS, such as TARDBP (TDP-43) and FUS. We found a functional impairment of myogenesis that parallels defects of glucose oxidation in ALS muscle cells. We identified FOXO1 transcription factor as a key mediator of these metabolic and functional features in ALS muscle, via gene expression profiling and biochemical surveys in TDP-43 and FUS-silenced muscle progenitors. Strikingly, inhibition of FOXO1 mitigated the impaired myogenesis in both the genetically modified and the primary ALS myoblasts. In addition, specific in vivo conditional knockdown of TDP-43 or FUS orthologs (TBPH or caz) in Drosophila muscle precursor cells resulted in decreased innervation and profound dysfunction of motor nerve terminals and neuromuscular synapses, accompanied by motor abnormalities and reduced lifespan. Remarkably, these phenotypes were partially corrected by foxo inhibition, bolstering the potential pharmacological management of muscle intrinsic abnormalities associated with ALS. The findings demonstrate an intrinsic muscle dysfunction in ALS, which can be modulated by targeting FOXO factors, paving the way for novel therapeutic approaches that focus on the skeletal muscle as complementary target tissue.
Assuntos
Esclerose Lateral Amiotrófica , Proteína Forkhead Box O1 , Músculo Esquelético , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Humanos , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Masculino , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Feminino , Drosophila , Desenvolvimento Muscular/fisiologia , Pessoa de Meia-Idade , Idoso , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mioblastos/metabolismoRESUMO
A bulky, tridentate phenolate ligand (ImPh2 NNOtBu ) was used to synthesise the first example of a mononuclear, facial, N,N,O-bound iron(II) benzoylformate complex, [Fe(ImPh2 NNOtBu )(BF)] (2). The X-ray crystal structure of 2 reveals that the iron centre is pentacoordinate (τ=0.5), with a vacant site located cis to the bidentate BF ligand. The Mössbauer parameters of 2 are consistent with high-spin iron(II), and are very close to those reported for α-ketoglutarate-bound non-heme iron enzyme active sites. According toâ NMR and UV-vis spectroscopies, the structural integrity of 2 is retained in both coordinating and non-coordinating solvents. Cyclic voltammetry studies show that the iron centre has a very low oxidation potential and is more prone to electrochemical oxidation than the redox-active phenolate ligand. Complex 2 reacts with NO to form a S=3 /2 {FeNO}7 adduct in which NO binds directly to the iron centre, according to EPR, UV-vis, IR spectroscopies and DFT analysis. Upon O2 exposure, 2 undergoes oxidative decarboxylation to form a diiron(III) benzoate complex, [Fe2 (ImPh2 NNOtBu )2 (µ2 -OBz)(µ2 -OH)2 ]+ (3). A small amount of hydroxylated ligand was also observed by ESI-MS, hinting at the formation of a high-valent iron(IV)-oxo intermediate. Initial reactivity studies show that 2 is capable of oxygen atom transfer reactivity with O2 , converting methyl(p-tolyl)sulfide to sulfoxide.
RESUMO
The host immune response might confer differential vulnerability to SARS-CoV-2 infection. The Toll-like receptor 8 (TLR8), could participated for severe COVID-19 outcomes. To investigated the relationship of TLR8 rs3764879-C/G, rs3764880-A/G, and rs3761624-A/G with COVID-19 outcomes and with biochemical parameters. A cross-sectional study of 830 laboratory-confirmed COVID-19 patients was performed, and classified into mild, severe, critical, and deceased outcomes. The TLR8 rs3764879-C/G, rs3764880-A/G, and rs3761624-A/G polymorphisms were genotyped. A logistic regression analysis was performed to determinate the association with COVID-19. A stratified analysis was by alleles was done with clinical and metabolic markets. In all outcomes, men presented the highest ferritin levels compared to women (P < 0.001). LDH levels were significantly different between sex in mild (P = 0.003), severe (P < 0.001) and deceased (P = 0.01) COVID-19 outcomes. The GGG haplotype showed an Odds Ratio of 1.55 (Interval Confidence 95% 1.05-2.32; P = 0.03) in men. Among patients with severe outcome, we observed that the carriers of the GGG haplotype had lower Ferritin, C-reactive protein and LDH levels than the CAA carriers (P < 0.01). After further stratified by sex, these associations were also seen in the male patients, except for D-dimer. Interestingly, among men patients, we could observe associations between TLR8 haplotypes and Ferritin (P < 0.001), D-dimer (P = 0.04), C-reactive protein, and Lactate dehydrogenase in mild (P = 0.04) group. Our results suggest that even though TLR8 haplotypes show a significant association with COVID-19 outcomes, they are associated with clinical markers in COVID-19 severity.
RESUMO
BACKGROUND: To the best of our knowledge, there are no validated neonatal pain assessment scales in Spanish. Given the need for such a scale, a study was undertaken to adapt and validate the Premature Infant Pain Profile-Revised (PIPP-R) scale. After translation and back-translation, content validity was addressed, a crucial phase in validation studies, in which researchers examine whether the items that make up the scale represent the content that the scale is intended to assess. AIMS: The aim was to provide evidence for the content validity of the Spanish adaptation of the PIPP-R scale. METHOD: The study used the Delphi technique with 10 experts. Data collection was anonymous and was conducted through an online platform. It was an ad hoc survey consisting of four questions, with a five-point Likert scale for each item on the scale and for the instruction table. An item-content validity index (I-CVI) and a scale-content validity index (S-CVI) were calculated for the analysis. RESULTS: After two rounds of the survey, all items exceeded an I-CVI of 0.9. The S-CVI value was 0.98 (±0.03) for the scale, and 1 for its instruction table. The kappa index yielded values indicating an excellent degree of agreement. CONCLUSIONS: The Spanish version of the PIPP-R obtained a high degree of content validity according to the expert group and the Delphi technique.
Assuntos
Recém-Nascido Prematuro , Dor , Recém-Nascido , Humanos , Inquéritos e Questionários , Medição da Dor/métodos , Traduções , Reprodutibilidade dos TestesRESUMO
Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, has been found in all major grape-growing regions in California, U.S.A. Large collections of X. fastidiosa isolates are available from these areas, which enable comparative studies of pathogen genetic traits and virulence. Owing to the significant resource requirements for experiments with X. fastidiosa in grapevine, however, most studies use only a single isolate to evaluate disease, and it is not clear how much variability between isolates impacts disease development in experimental or natural settings. In this study, a comprehensive panel of X. fastidiosa isolates from all California grape-growing regions was tested for virulence in susceptible grapevine and in the model host plant, tobacco. Seventy-one isolates were tested, 29 in both grapevine and tobacco. The results of this study highlight the inherent variability of inoculation experiments with X. fastidiosa, including variation in disease severity in plants inoculated with a single isolate, and variability between experimental replicates. There were limited differences in virulence between isolates that were consistent across experimental replicates, or across different host plants. This suggests that choice of isolate within the X. fastidiosa subsp. fastidiosa Pierce's disease group may not make any practical difference when testing in susceptible grape varieties, and that pathogen evolution has not significantly changed virulence of Pierce's disease isolates within California. The location of isolation also did not dictate relative disease severity. This information will inform experimental design for future studies of X. fastidiosa in grapevine and provide important context for genomic research.
Assuntos
Doenças das Plantas , Vitis , Xylella , Xylella/genética , Xylella/patogenicidade , Vitis/microbiologia , Doenças das Plantas/microbiologia , California , Virulência , Nicotiana/microbiologiaRESUMO
The brain-gut axis has been identified as an important contributor to the physiopathology of Parkinson's disease. In this pathology, inflammation is thought to be driven by the damage caused by aggregation of α-synuclein in the brain. Interestingly, the Braak's theory proposes that α-synuclein misfolding may originate in the gut and spread in a "prion-like" manner through the vagus nerve into the central nervous system. In the enteric nervous system, enteric glial cells are the most abundant cellular component. Several studies have evaluated their role in Parkinson's disease. Using samples obtained from patients, cell cultures, or animal models, the studies with specific antibodies to label enteric glial cells (GFAP, Sox-10, and S100ß) seem to indicate that activation and reactive gliosis are associated to the neurodegeneration produced by Parkinson's disease in the enteric nervous system. Of interest, Toll-like receptors, which are expressed on enteric glial cells, participate in the triggering of immune/inflammatory responses, in the maintenance of intestinal barrier integrity and in the configuration of gut microbiota; thus, these receptors might contribute to Parkinson's disease. External factors like stress also seem to be relevant in its pathogenesis. Some authors have studied ways to reverse changes in EGCs with interventions such as administration of Tryptophan-2,3-dioxygenase inhibitors, nutraceuticals, or physical exercise. Some researchers point out that beyond being activated during the disease, enteric glial cells may contribute to the development of synucleinopathies. Thus, it is still necessary to further study these cells and their role in Parkinson's disease.
Assuntos
Sistema Nervoso Entérico , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Inflamação/patologia , Neuroglia/metabolismo , Sistema Nervoso Entérico/metabolismoRESUMO
Although pulmonary embolism (PE) is a frequent complication in COVID-19, its consequences remain unknown. We performed pulmonary function tests, echocardiography and computed tomography pulmonary angiography and identified blood biomarkers in a cohort of consecutive hospitalized COVID-19 patients with pneumonia to describe and compare medium-term outcomes according to the presence of PE, as well as to explore their potential predictors. A total of 141 patients (56 with PE) were followed up during a median of 6 months. Post-COVID-19 radiological lung abnormalities (PCRLA) and impaired diffusing capacity for carbon monoxide (DLCOc) were found in 55.2% and 67.6% cases, respectively. A total of 7.3% had PE, and 6.7% presented an intermediate-high probability of pulmonary hypertension. No significant difference was found between PE and non-PE patients. Univariate analysis showed that age > 65, some clinical severity factors, surfactant protein-D, baseline C-reactive protein, and both peak red cell distribution width and Interleukin (IL)-10 were associated with DLCOc < 80%. A score for PCRLA prediction including age > 65, minimum lymphocyte count, and IL-1ß concentration on admission was constructed with excellent overall performance. In conclusion, reduced DLCOc and PCRLA were common in COVID-19 patients after hospital discharge, but PE did not increase the risk. A PCRLA predictive score was developed, which needs further validation.
Assuntos
COVID-19 , Embolia Pulmonar , Humanos , COVID-19/complicações , COVID-19/sangue , Embolia Pulmonar/etiologia , Embolia Pulmonar/sangue , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Testes de Função Respiratória , Pulmão/diagnóstico por imagem , Biomarcadores/sangue , Ecocardiografia , Hipertensão Pulmonar/etiologiaRESUMO
Obstructive sleep apnea (OSA) is quite prevalent during pregnancy and is associated with adverse perinatal outcomes, but its potential influence on fetal development remains unclear. This study investigated maternal OSA impact on the fetus by analyzing gene expression profiles in whole cord blood (WCB). Ten women in the third trimester of pregnancy were included, five OSA and five non-OSA cases. WCB RNA expression was analyzed by microarray technology to identify differentially expressed genes (DEGs) under OSA conditions. After data normalization, 3238 genes showed significant differential expression under OSA conditions, with 2690 upregulated genes and 548 downregulated genes. Functional enrichment was conducted using gene set enrichment analysis (GSEA) applied to Gene Ontology annotations. Key biological processes involved in OSA were identified, including response to oxidative stress and hypoxia, apoptosis, insulin response and secretion, and placental development. Moreover, DEGs were confirmed through qPCR analyses in additional WCB samples (7 with OSA and 13 without OSA). This highlighted differential expression of several genes in OSA (EGR1, PFN1 and PRKAR1A), with distinct gene expression profiles observed during rapid eye movement (REM)-OSA in pregnancy (PFN1, UBA52, EGR1, STX4, MYC, JUNB, and MAPKAP). These findings suggest that OSA, particularly during REM sleep, may negatively impact various biological processes during fetal development.
Assuntos
Sangue Fetal , Desenvolvimento Fetal , Apneia Obstrutiva do Sono , Humanos , Feminino , Gravidez , Sangue Fetal/metabolismo , Adulto , Apneia Obstrutiva do Sono/genética , Desenvolvimento Fetal/genética , Transcriptoma , Perfilação da Expressão Gênica , Complicações na Gravidez/genéticaRESUMO
Caregivers of autistic children in low-to-middle-income countries experience many barriers to access resources to support their child's development. Caregiver training is considered an evidence-based practice and may be a cost-effective way to support caregivers of autistic children in such settings. This study focuses on the cultural adaptation of Parents Taking Action (PTA; Magaña et al., Family Process, 56, 57-74, 2017) to support caregivers of autistic children in Paraguay. We conducted focus groups and individual interviews with 28 caregivers, autistic individuals, and professionals in Paraguay to understand caregivers' needs and to explore needed cultural adaptations of PTA to achieve contextual fit. Participants identified caregivers' need for accurate and reliable information, strategies to support children's growth, and emotional support and strategies to manage stress. Additionally, participants provided recommendations for adapting PTA considering the dimensions within the Cultural Adaptation Checklist (Lee et al., International Journal of Developmental Disabilities, 2023). This study is the first step in the iterative process of culturally adapting an intervention and the process described in this study may be appropriate for culturally adapting other interventions.
Assuntos
Transtorno Autístico , Cuidadores , Grupos Focais , Humanos , Cuidadores/psicologia , Cuidadores/educação , Feminino , Masculino , Adulto , Transtorno Autístico/psicologia , Transtorno Autístico/terapia , Pré-Escolar , Paraguai , Criança , Pais/psicologia , Pais/educação , Pessoa de Meia-Idade , Assistência à Saúde Culturalmente Competente , Pesquisa QualitativaRESUMO
BACKGROUND: Kangaroo care (KC) is an evidence-based best practice that can prevent major health complications in preterm infants. However, there is a lack of evidence on the feasibility and safety of placing extremely preterm infants under 28 weeks gestational age in KC position. AIM: To compare thermal stability 60 min after the first KC session in the lateral versus prone position in extremely preterm infants under 28 weeks gestational age. STUDY DESIGN: This is a single-centre, randomized, non-inferiority, parallel clinical trial. The patients were extremely preterm infants during their first 5 days of life. Infants in the intervention group received KC in the lateral position while those in the control group received KC in the prone position. All infants receiving KC were inside their polyethylene bags but maintained skin-to-skin contact. The primary outcome was the axillary temperature of the infants, and the secondary outcome was the development of intraventricular haemorrhage. RESULTS: Seventy infants were randomized (35 per group). The mean gestational age was 26 +1(1+1) in both groups. In the first KC session, the infant temperature at 60 minutes was 36.79°C (0.43) in lateral KC position, and 36.78°C (0.38) in prone KC position (p = .022). In lateral KC position, 7.69% (2) of the children who, according to the cranial ultrasound performed before the first session, had no haemorrhage presented with intraventricular haemorrhage after the first session. In prone KC position, new haemorrhages appeared after the first session in 29.17% (7) (p = .08). CONCLUSIONS: The lateral KC position is an alternative to the conventional prone KC position and maintains normothermia in infants under 28 weeks gestational age. RELEVANCE TO CLINICAL PRACTICE: Extremely preterm infants are candidates for KC. Lateral KC position is an evidence-based best practice that can be applied to preterm infants under 28 weeks GA. This evidence is particularly useful in performing umbilical catheterization on these patients.
RESUMO
MOTIVATION: Selecting the splice variant that best represents a coding gene is a crucial first step in many experimental analyses, and vital for mapping clinically relevant variants. This study compares the longest isoforms, MANE Select transcripts, APPRIS principal isoforms, and expression data, and aims to determine which method is best for selecting biological important reference splice variants for large-scale analyses. RESULTS: Proteomics analyses and human genetic variation data suggest that most coding genes have a single main protein isoform. We show that APPRIS principal isoforms and MANE Select transcripts best describe these main cellular isoforms, and find that using the longest splice variant as the representative is a poor strategy. Exons unique to the longest splice isoforms are not under selective pressure, and so are unlikely to be functionally relevant. Expression data are also a poor means of selecting the main splice variant. APPRIS principal and MANE Select exons are under purifying selection, while exons specific to alternative transcripts are not. There are MANE and APPRIS representatives for almost 95% of genes, and where they agree they are particularly effective, coinciding with the main proteomics isoform for over 98.2% of genes. AVAILABILITY AND IMPLEMENTATION: APPRIS principal isoforms for human, mouse and other model species can be downloaded from the APPRIS database (https://appris.bioinfo.cnio.es), GENCODE genes (https://www.gencodegenes.org/) and the Ensembl website (https://www.ensembl.org). MANE Select transcripts for the human reference set are available from the Ensembl, GENCODE and RefSeq databases (https://www.ncbi.nlm.nih.gov/refseq/). Lists of splice variants where MANE and APPRIS coincide are available from the APPRIS database. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Proteômica , Animais , Éxons , Humanos , Camundongos , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMO
A new outbreak of monkeypox has been reported worldwide with CNS complications like encephalitis or myelitis being extremely rare. We present a case of a 30-year-old man with PCR-confirmed diagnosis of monkeypox who developed rapid neurological deterioration with extensive inflammatory involvement of the brain and spinal cord on MRI. Because of the clinical and radiological resemblance to acute disseminated encephalomyelitis (ADEM), it was decided to indicate treatment with high-dose corticosteroids for 5 days (without concomitant antiviral management due to lack of availability in our country). Given the poor clinical and radiological response, 5 days of immunoglobulin G were administered. During follow-up the patient's clinical condition improved, physiotherapy was started and all associated medical complications were controlled. To our knowledge, this is the first reported monkeypox case with severe CNS complications treated with steroids and immunoglobulin in the absence of specific antiviral treatment.