RESUMO
Patients with ESRD undergoing peritoneal dialysis develop progressive peritoneal fibrosis, which may lead to technique failure. Recent data point to Th17-mediated inflammation as a key contributor in peritoneal damage. The leukocyte antigen CD69 modulates the setting and progression of autoimmune and inflammatory diseases by controlling the balance between Th17 and regulatory T cells (Tregs). However, the relevance of CD69 in tissue fibrosis remains largely unknown. Thus, we explored the role of CD69 in fibroproliferative responses using a mouse model of peritoneal fibrosis induced by dialysis fluid exposure under either normal or uremic status. We found that cd69-/- mice compared with wild-type (WT) mice showed enhanced fibrosis, mesothelial to mesenchymal transition, IL-17 production, and Th17 cell infiltration in response to dialysis fluid treatment. Uremia contributed partially to peritoneal inflammatory and fibrotic responses. Additionally, antibody-mediated CD69 blockade in WT mice mimicked the fibrotic response of cd69-/- mice. Finally, IL-17 blockade in cd69-/- mice decreased peritoneal fibrosis to the WT levels, and mixed bone marrow from cd69-/- and Rag2-/-γc-/- mice transplanted into WT mice reproduced the severity of the response to dialysis fluid observed in cd69-/- mice, showing that CD69 exerts its regulatory function within the lymphocyte compartment. Overall, our results indicate that CD69 controls tissue fibrosis by regulating Th17-mediated inflammation.
Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Lectinas Tipo C/imunologia , Fibrose Peritoneal/imunologia , Animais , Antígenos CD/fisiologia , Antígenos de Diferenciação de Linfócitos T/fisiologia , Feminino , Lectinas Tipo C/deficiência , Lectinas Tipo C/fisiologia , Camundongos , Células Th17/fisiologiaRESUMO
Background: Peritoneal dialysis (PD) is a renal replacement technique that requires repeated exposure of the peritoneum to hyperosmolar PD fluids (PDFs). Unfortunately, it promotes alterations of the peritoneal membrane (PM) that affects its functionality, including mesothelial-mesenchymal transition (MMT) of mesothelial cells (MCs), inflammation, angiogenesis, and fibrosis. Glucose is the most used osmotic agent, but it is known to be at least partially responsible, together with its degradation products (GDP), for those changes. Therefore, there is a need for more biocompatible osmotic agents to better maintain the PM. Herein we evaluated the biocompatibility of Steviol glycosides (SG)-based fluids. Methods: The ultrafiltration and transport capacities of SG-containing and glucose-based fluids were analyzed using artificial membranes and an in vivo mouse model, respectively. To investigate the biocompatibility of the fluids, Met-5A and human omental peritoneal MCs (HOMCs) were exposed in vitro to different types of glucose-based PDFs (conventional 4.25% glucose solution with high-GDP level and biocompatible 2.3% glucose solution with low-GDP level), SG-based fluids or treated with TGF-ß1. Mice submitted to surgery of intraperitoneal catheter insertion were treated for 40 days with SG- or glucose-based fluids. Peritoneal tissues were collected to determine thickness, MMT, angiogenesis, as well as peritoneal washings to analyze inflammation. Results: Dialysis membrane experiments demonstrated that SG-based fluids at 1.5%, 1%, and 0.75% had a similar trend in weight gain, based on curve slope, as glucose-based fluids. Analyzing transport capacity in vivo, 1% and 0.75% SG-based fluid-exposed nephrectomized mice extracted a similar amount of urea as the glucose 2.3% group. In vitro, PDF with high-glucose (4.25%) and high-GDP content induced mesenchymal markers and angiogenic factors (Snail1, Fibronectin, VEGF-A, FGF-2) and downregulates the epithelial marker E-Cadherin. In contrast, exposition to low-glucose-based fluids with low-GDP content or SG-based fluids showed higher viability and had less MMT. In vivo, SG-based fluids preserved MC monolayer, induced less PM thickness, angiogenesis, leukocyte infiltration, inflammatory cytokines release, and MMT compared with glucose-based fluids. Conclusion: SG showed better biocompatibility as an osmotic agent than glucose in vitro and in vivo, therefore, it could alternatively substitute glucose in PDF.
RESUMO
Peritoneal dialysis (PD) is a renal replacement therapy consistent on the administration and posterior recovery of a hyperosmotic fluid in the peritoneal cavity to drain water and toxic metabolites that functionally-insufficient kidneys are not able to eliminate. Unfortunately, this procedure deteriorates the peritoneum. Tissue damage triggers the onset of inflammation to heal the injury. If the injury persists and inflammation becomes chronic, it may lead to fibrosis, which is a common occurrence in many diseases. In PD, chronic inflammation and fibrosis, along with other specific processes related to these ones, lead to ultrafiltration capacity deterioration, which means the failure and subsequent cessation of the technique. Working with human samples provides information about this deterioration but presents technical and ethical limitations to obtain biopsies. Animal models are essential to study this deterioration since they overcome these shortcomings. A chronic mouse infusion model was developed in 2008, which benefits from the wide range of genetically modified mice, opening up the possibility of studying the mechanisms involved. This model employs a customized device designed for mice, consisting of a catheter attached to an access port that is placed subcutaneously at the back of the animal. This procedure avoids continuous puncture of the peritoneum during long-term experiments, reducing infections and inflammation due to injections. Thanks to this model, peritoneal damage induced by chronic PD fluid exposure has been characterized and modulated. This technique allows the infusion of large volumes of fluids and could be used for the study of other diseases in which inoculation of drugs or other substances over extended periods of time is necessary. This article shows the method for the surgical placement of the catheter in mice. Moreover, it explains the procedure for a 5/6 nephrectomy to mimic the state of renal insufficiency present in PD patients.
Assuntos
Catéteres/estatística & dados numéricos , Nefrectomia/métodos , Diálise Peritoneal/métodos , Animais , Modelos Animais de Doenças , Humanos , CamundongosAssuntos
Soluções para Diálise/efeitos adversos , Diálise Peritoneal/efeitos adversos , Doenças Peritoneais/induzido quimicamente , Doenças Peritoneais/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Animais , Celecoxib , Soluções para Diálise/farmacologia , Modelos Animais de Doenças , Enalapril/farmacologia , Feminino , Humanos , Masculino , Camundongos , Diálise Peritoneal/métodos , Peritônio/efeitos dos fármacos , Estudos Prospectivos , Pirazóis/farmacologia , Ratos , Rosiglitazona , Sensibilidade e Especificidade , Sulfonamidas/farmacologia , Tiazolidinedionas/farmacologiaRESUMO
[This corrects the article DOI: 10.1155/2015/416480.].
RESUMO
Fibrosis is a general complication in many diseases. It is the main complication during peritoneal dialysis (PD) treatment, a therapy for renal failure disease. Local inflammation and mesothelial to mesenchymal transition (MMT) are well known key phenomena in peritoneal damage during PD. New data suggest that, in the peritoneal cavity, inflammatory changes may be regulated at least in part by a delicate balance between T helper 17 and regulatory T cells. This paper briefly reviews the implication of the Th17/Treg-axis in fibrotic diseases. Moreover, it compares current evidences described in PD animal experimental models, indicating a loss of Th17/Treg balance (Th17 predominance) leading to peritoneal damage during PD. In addition, considering the new clinical and animal experimental data, new therapeutic strategies to reduce the Th17 response and increase the regulatory T response are proposed. Thus, future goals should be to develop new clinical biomarkers to reverse this immune misbalance and reduce peritoneal fibrosis in PD.
Assuntos
Fibrose/imunologia , Inflamação/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Modelos Animais de Doenças , Fibrose/complicações , Fibrose/patologia , Humanos , Inflamação/complicações , Inflamação/patologia , Diálise Peritoneal/efeitos adversos , Peritônio/imunologia , Peritônio/patologia , Linfócitos T Reguladores/patologia , Células Th17/patologiaRESUMO
Preservation of peritoneal membrane (PM) is essential for long-term survival in peritoneal dialysis (PD). Continuous presence of PD fluids (PDF) in the peritoneal cavity generates chronic inflammation and promotes changes of the PM, such as fibrosis, angiogenesis, and lymphangiogenesis. Mesothelial-to-mesenchymal transition (MMT) and endothelial-to-mesenchymal transition (Endo-MT) seem to play a central role in this pathogenesis. We speculated that Rapamycin, a potent immunosuppressor, could be beneficial by regulating blood and lymphatic vessels proliferation. We demonstrate that mice undergoing a combined PD and Rapamycin treatment (PDF + Rapa group) presented a reduced PM thickness and lower number of submesothelial blood and lymphatic vessels, as well as decreased MMT and Endo-MT, comparing with their counterparts exposed to PD alone (PDF group). Peritoneal water transport in the PDF + Rapa group remained at control level, whereas PD effluent levels of VEGF, TGF-ß, and TNF-α were lower than in the PDF group. Moreover, the treatment of mesothelial cells with Rapamycin in vitro significantly decreased VEGF synthesis and selectively inhibited the VEGF-C and VEGF-D release when compared with control cells. Thus, Rapamycin has a protective effect on PM in PD through an antifibrotic and antiproliferative effect on blood and lymphatic vessels. Moreover, it inhibits Endo-MT and, at least partially, MMT.