Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Diabetes Obes Metab ; 23(8): 1795-1805, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33822469

RESUMO

AIM: To gain further insights into the efficacy of SAR425899, a dual glucagon-like peptide-1/glucagon receptor agonist, by providing direct comparison with the glucagon-like peptide-1 receptor agonist, liraglutide, in terms of key outcomes of glucose metabolism. RESEARCH DESIGN AND METHODS: Seventy overweight to obese subjects with type 2 diabetes (T2D) were randomized to receive once-daily subcutaneous administrations of SAR425899 (0.12, 0.16 or 0.20 mg), liraglutide (1.80 mg) or placebo for 26 weeks. Mixed meal tolerance tests were conducted at baseline (BSL) and at the end of treatment (EOT). Metabolic indices of insulin action and secretion were assessed via Homeostasis Model Assessment (HOMA2) and oral minimal model (OMM) methods. RESULTS: From BSL to EOT (median [25th, 75th] percentile), HOMA2 quantified a significant improvement in basal insulin action in liraglutide (35% [21%, 74%]), while secretion enhanced both in SAR425899 (125% [63%, 228%]) and liraglutide (73% [43%, 147%]). OMM quantified, both in SAR425899 and liraglutide, a significant improvement in insulin sensitivity (203% [58%, 440%] and 36% [21%, 197%]), basal beta-cell responsiveness (67% [34%, 112%] and 40% [16%, 59%]), and above-basal beta-cell responsiveness (139% [64%, 261%] and 69% [-15%, 120%]). A significant delay in glucose absorption was highlighted in SAR425899 (37% [52%,18%]). CONCLUSIONS: SAR425899 and liraglutide improved postprandial glucose control in overweight to obese subjects with T2D. A significantly higher enhancement in beta-cell function was shown by SAR425899 than liraglutide.


Assuntos
Diabetes Mellitus Tipo 2 , Liraglutida , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose , Humanos , Hipoglicemiantes/uso terapêutico , Insulina , Liraglutida/uso terapêutico , Receptores de Glucagon
2.
Diabetes Obes Metab ; 22(4): 640-647, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31808298

RESUMO

AIM: To evaluate the change in insulin sensitivity, ß-cell function and glucose absorption after 28 days of treatment with high and low doses of SAR425899, a novel dual glucagon-like peptide-1 receptor/glucagon receptor agonist, versus placebo. MATERIALS AND METHODS: Thirty-six overweight to obese subjects with type 2 diabetes were randomized to receive daily subcutaneous administrations of low-dose SAR425899 (0.03, 0.06 and 0.09 mg) and high-dose SAR425899 (0.06, 0.12 and 0.18 mg) or placebo for 28 days; dose escalation occurred after days 7 and 14. Mixed meal tolerance tests were conducted before treatment (day -1) and on days 1 and 28. Oral glucose and C-peptide minimal models were used to quantify metabolic indices of insulin sensitivity, ß-cell responsiveness and glucose absorption. RESULTS: With low-dose SAR425899, high-dose SAR425899 and placebo, ß-cell function from day -1 to day 28 increased by 163%, 95% and 23%, respectively. The change in area under the curve for the rate of meal glucose appearance between 0 and 120 minutes was -32%, -20% and 8%, respectively. CONCLUSIONS: After 28 days of treatment, SAR425899 improved postprandial glucose control by significantly enhancing ß-cell function and slowing glucose absorption rate.


Assuntos
Diabetes Mellitus Tipo 2 , Glicemia , Peptídeo C , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Hipoglicemiantes/uso terapêutico , Insulina , Receptores de Glucagon
3.
Theor Biol Med Model ; 10: 50, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23988084

RESUMO

BACKGROUND: Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. METHODS: First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. RESULTS: Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. CONCLUSIONS: The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.


Assuntos
Encéfalo/fisiologia , Glucose/metabolismo , Neurônios/fisiologia , Trifosfato de Adenosina/metabolismo , Glicemia/metabolismo , Estimulação Elétrica , Metabolismo Energético , Humanos , Insulina/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Modelos Biológicos
4.
Obesity (Silver Spring) ; 31(2): 350-362, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36695055

RESUMO

OBJECTIVE: This study tested the hypothesis that treatment with the glucagon-like peptide-1/glucagon receptor agonist SAR425899 would lead to a smaller decrease in sleeping metabolic rate (SMR; kilocalories/day) than expected from the loss of lean and fat mass (metabolic adaptation). METHODS: This Phase 1b, double-blind, randomized, placebo-controlled study was conducted at two centers in inpatient metabolic wards. Thirty-five healthy males and females with overweight and obesity (age = 36.5 ± 7.1 years) were randomized to a calorie-reduced diet (-1000 kcal/d) and escalating doses (0.06-0.2 mg/d) of SAR425899 (n = 17) or placebo (n = 18) for 19 days. SMR was measured by whole-room calorimetry. RESULTS: Both groups lost weight (-3.68 ± 1.37 kg placebo; -4.83 ± 1.44 kg SAR425899). Those treated with SAR425899 lost more weight, fat mass, and fat free mass (p < 0.05) owing to a greater achieved energy deficit than planned. The SAR425899 group had a smaller reduction in body composition-adjusted SMR (p = 0.002) as compared with placebo, but not 24-hour energy expenditure. Fat oxidation and ketogenesis increased in both groups, with significantly greater increases with SAR425899 (p < 0.05). CONCLUSIONS: SAR425899 led to reduced selective metabolic adaptation and increased lipid oxidation, which are believed to be beneficial for weight loss and weight-loss maintenance.


Assuntos
Obesidade , Receptores de Glucagon , Masculino , Feminino , Humanos , Adulto , Receptores de Glucagon/agonistas , Obesidade/complicações , Sobrepeso/tratamento farmacológico , Sobrepeso/complicações , Oxirredução , Redução de Peso , Metabolismo Energético , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico
5.
Adv Exp Med Biol ; 736: 425-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22161344

RESUMO

Deregulations in the human energy metabolism may cause diseases such as obesity and type 2 diabetes mellitus. The origins of these pathologies are fairly unknown. The key role of the brain is the regulation of the complex whole body energy metabolism. The Selfish Brain Theory identifies the priority of brain energy supply in the competition for available energy resources within the organism. Here, we review mathematical models of the human energy metabolism supporting central aspects of the Selfish Brain Theory. First, we present a dynamical system modeling the whole body energy metabolism. This model takes into account the two central control mechanisms of the brain, i.e., allocation and appetite. Moreover, we present mathematical models of regulatory subsystems. We examine a neuronal model which specifies potential elements of the brain to sense and regulate cerebral energy content. We investigate a model of the HPA system regulating the allocation of energy within the organism. Finally, we present a robust modeling approach of appetite regulation. All models account for a systemic understanding of the human energy metabolism and thus do shed light onto defects causing metabolic diseases.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Modelos Biológicos , Neurônios/metabolismo , Algoritmos , Regulação do Apetite/fisiologia , Simulação por Computador , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia
6.
J Theor Biol ; 264(4): 1214-24, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20230841

RESUMO

The regulation of the energy metabolism is crucial to ensure the functionality of the entire organism. Deregulations may lead to severe pathologies such as obesity and type 2 diabetes mellitus. The decisive role of the brain as the active controller and heavy consumer in the complex whole body energy metabolism is the matter of recent research. Latest studies suggest that the brain's energy supply has the highest priority while all organs in the organism compete for the available energy resources. In our novel mathematical model, we address these new findings. We integrate energy fluxes and their control signals such as glucose fluxes, insulin signals as well as the ingestion momentum in our new dynamical system. As a novel characteristic, the hormone insulin is regarded as central feedback signal of the brain. Hereby, our model particularly contains the competition for energy between brain and body periphery. The analytical investigation of the presented dynamical system shows a stable long-term behavior of the entire energy metabolism while short time observations demonstrate the typical oscillating blood glucose variations as a consequence of food intake. Our simulation results demonstrate a realistic behavior even in situations like exercise or exhaustion, and key elements like the brain's preeminence are reflected. The presented dynamical system is a step towards a systemic understanding of the human energy metabolism and thus may shed light to defects causing diseases based on deregulations in the energy metabolism.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Modelos Biológicos , Animais , Relógios Biológicos , Encéfalo/fisiologia , Simulação por Computador , Retroalimentação Fisiológica , Humanos , Cinética , Transdução de Sinais
7.
Obesity (Silver Spring) ; 25(12): 2088-2091, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29071809

RESUMO

OBJECTIVE: Obesity pharmacotherapies result in an exponential time course for energy intake whereby large early decreases dissipate over time. This pattern of declining drug efficacy to decrease energy intake results in a weight loss plateau within approximately 1 year. This study aimed to elucidate the physiology underlying the exponential decay of drug effects on energy intake. METHODS: Placebo-subtracted energy intake time courses were examined during long-term obesity pharmacotherapy trials for 14 different drugs or drug combinations within the theoretical framework of a proportional feedback control system regulating human body weight. RESULTS: Assuming each obesity drug had a relatively constant effect on average energy intake and did not affect other model parameters, our model correctly predicted that long-term placebo-subtracted energy intake was linearly related to early reductions in energy intake according to a prespecified equation with no free parameters. The simple model explained about 70% of the variance between drug studies with respect to the long-term effects on energy intake, although a significant proportional bias was evident. CONCLUSIONS: The exponential decay over time of obesity pharmacotherapies to suppress energy intake can be interpreted as a relatively constant effect of each drug superimposed on a physiological feedback control system regulating body weight.


Assuntos
Tratamento Farmacológico/métodos , Ingestão de Energia/fisiologia , Obesidade/tratamento farmacológico , Metabolismo Energético/fisiologia , Humanos
8.
Obesity (Silver Spring) ; 22(10): 2105-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24961931

RESUMO

OBJECTIVE: Despite the fact that most obesity drugs primarily work by reducing metabolizable energy intake, elucidation of the time course of energy intake changes during long-term obesity pharmacotherapy has been prevented by the limitations of self-report methods of measuring energy intake. METHODS: A validated mathematical model of human metabolism was used to provide the first quantification of metabolizable energy intake changes during long-term obesity pharmacotherapy using body weight data from randomized, placebo-controlled trials that evaluated 14 different drugs or drug combinations. RESULTS: Changes in metabolizable energy intake during obesity pharmacotherapy were reasonably well-described by an exponential pattern comprising three simple parameters, with early large changes in metabolizable energy intake followed by a slow transition to a smaller persistent drug effect. CONCLUSIONS: Repeated body weight measurements along with a mathematical model of human metabolism can be used to quantify changes in metabolizable energy intake during obesity pharmacotherapy. The calculated metabolizable energy intake changes followed an exponential time course, and therefore different drugs can be evaluated and compared using a common mathematical framework.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Ingestão de Energia , Obesidade/tratamento farmacológico , Peso Corporal , Metabolismo Energético , Humanos , Modelos Biológicos , Obesidade/metabolismo
9.
Theory Biosci ; 130(1): 5-18, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20734159

RESUMO

The regulation of the human energy metabolism is crucial to ensure the functionality of the entire organism. Deregulations may lead to severe pathologies such as diabetes mellitus and obesity. The decisive role of the brain as active controller and heavy consumer in the complex whole-body energy metabolism is the object of recent research. Latest studies suggest the priority of the brain energy supply in the competition between brain and body periphery for the available energy resources. In this paper, a systemic investigation of the human energy metabolism is presented which consists of a compartment model including periphery, blood, and brain as well as signaling paths via insulin, appetite, and ingestion. The presented dynamical system particularly contains the competition for energy between brain and body periphery. Characteristically, the hormone insulin is regarded as central feedback signal of the brain. The model realistically reproduces the qualitative behavior of the energy metabolism. Short-time observations demonstrate the physiological periodic food intake generating the typical oscillating blood glucose variations. Integration over the daily cycle yields a long-term model which shows a stable behavior in accordance with the homeostatic regulation of the energy metabolism on a long-time scale. Two types of abstract constitutive equations describing the interaction between compartments and signals are taken into consideration. These are nonlinear and linear representatives from the class of feasible relations. The robustness of the model against the choice of the representative relation is linked to evolutionary stability of existing organisms.


Assuntos
Encéfalo/metabolismo , Modelos Neurológicos , Apetite/fisiologia , Glicemia/metabolismo , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Humanos , Insulina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA