Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(22): e202302021, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37074027

RESUMO

Ruthenium-catalyzed σ-bond activation-assisted meta-C-H functionalization has emerged as a useful tool to forge distal C-C bonds. However, given the limited number of mechanistic studies, a clear understanding of the origin of the site-selectivity and the complete reaction pattern is not available. Here, we present systematic computational studies on ruthenium-catalyzed C-H functionalization with primary, secondary, tertiary alkyl bromides and aryl bromides. The C-H scission and the C-C formation were carefully examined. Monocyclometalated ruthenium(II) complexes were identified as the active species, which then underwent inner-sphere single electron transfer (ISET) to activate the organic bromides. The site-selectivity results from the competition between the close-shell reductive elimination and the open-shell radical coupling. Based on this mechanistic understanding, a multilinear regression model was built to predict the site-selectivity, which was further validated by experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA