Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Biol Sci ; 291(2014): 20231408, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196349

RESUMO

Sleep benefits motor memory consolidation, which is mediated by sleep spindle activity and associated memory reactivations during non-rapid eye movement (NREM) sleep. However, the particular role of NREM2 and NREM3 sleep spindles and the mechanisms triggering this memory consolidation process remain unclear. Here, simultaneous electroencephalographic and functional magnetic resonance imaging (EEG-fMRI) recordings were collected during night-time sleep following the learning of a motor sequence task. Adopting a time-based clustering approach, we provide evidence that spindles iteratively occur within clustered and temporally organized patterns during both NREM2 and NREM3 sleep. However, the clustering of spindles in trains is related to motor memory consolidation during NREM2 sleep only. Altogether, our findings suggest that spindles' clustering and rhythmic occurrence during NREM2 sleep may serve as an intrinsic rhythmic sleep mechanism for the timed reactivation and subsequent consolidation of motor memories, through synchronized oscillatory activity within a subcortical-cortical network involved during learning.


Assuntos
Consolidação da Memória , Aprendizagem , Análise por Conglomerados , Memória , Sono
2.
Learn Mem ; 28(3): 72-75, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33593924

RESUMO

How does the time of day of a practice session affect learning of a new motor sequence in the elderly? Participants practiced a given finger tapping sequence either during morning or evening hours. All participants robustly improved performance speed within the session concurrent with a reorganization of the tapping pattern of the sequence. However, evening-trained participants showed additional gains overnight and at 1 wk posttraining; moreover, evening training led to a further reorganization of the tapping pattern offline. A learning experience preceding nocturnal sleep can lead to a task-specific movement routine as an expression of novel "how to" knowledge in the elderly.


Assuntos
Envelhecimento/fisiologia , Consolidação da Memória/fisiologia , Destreza Motora/fisiologia , Prática Psicológica , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
3.
J Physiol ; 594(1): 169-88, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26442464

RESUMO

KEY POINTS: Participants were scanned during the untrained-hand performance of a motor sequence, intensively trained a day earlier, and also a similarly constructed but novel, untrained sequence. The superior performance levels for the trained, compared to the untrained sequence, were associated with a greater magnitude of activity within the primary motor cortex (M1), bilaterally, for the trained sequence. The differential responses in the 'trained' M1, ipsilateral to the untrained hand, were positively correlated with experience-related differences in the functional connectivity between the 'trained' M1 and (1) its homologue and (2) the dorsal premotor cortex (PMd) within the contralateral hemisphere. No significant correlation was evident between experience-related differences in M1 - M1 and M1 - PMd connectivity measures. These results suggest that the transfer of sequence-specific information between the two primary motor cortices is predominantly mediated by excitatory mechanisms driven by the 'trained' M1 via two independent neural pathways. Following unimanual training on a novel sequence of movements, sequence-specific performance may improve overnight not only in the trained hand, but also in the hand afforded no actual physical experience. It is not clear, however, how transfer to the untrained hand is achieved. In the present study, we examined whether and how interaction between the two primary motor cortices contributes to the performance of a sequence of movements, extensively trained the day before, by the untrained hand. Accordingly, we studied participants during the untrained-hand performance of a finger-to-thumb opposition sequence (FOS), intensively trained a day earlier (T-FOS), and a similarly constructed, but novel, untrained FOS (U-FOS). Changes in neural signals driven by task performance were assessed using functional magnetic resonance imaging. To minimize potential differences as a result of the rate of sequence execution per se, participants performed both sequences at an identical paced rate. The analyses showed that the superior fluency in executing the T-FOS compared to the U-FOS was associated with higher activity within the primary motor cortex (M1), bilaterally, for the T-FOS. The differential responses in the 'trained' M1 were positively correlated with experience-related differences in the functional connectivity between the 'trained' M1 and (1) its left homologue and (2) the left dorsal premotor cortex. However, no significant correlation was evident between the changes in connectivity in these two routes. These results suggest that the transfer of sequence-specific information between the two primary motor cortices is predominantly mediated by excitatory mechanisms driven by the 'trained' M1 via at least two independent neural pathways.


Assuntos
Lateralidade Funcional , Mãos/fisiologia , Aprendizagem , Córtex Motor/fisiologia , Movimento , Adulto , Mapeamento Encefálico , Feminino , Mãos/inervação , Humanos , Masculino , Desempenho Psicomotor
4.
J Cogn Neurosci ; 27(4): 736-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25390206

RESUMO

It is not clear how the engagement of motor mnemonic processes is expressed in online brain activity. We scanned participants, using fMRI, during the paced performance of a finger-to-thumb opposition sequence (FOS), intensively trained a day earlier (T-FOS), and a similarly constructed, but novel, untrained FOS (U-FOS). Both movement sequences were performed in pairs of blocks separated by a brief rest interval (30 sec). We have recently shown that in the primary motor cortex (M1) motor memory was not expressed in the average signal intensity but rather in the across-block signal modulations, that is, when comparing the first to the second performance block across the brief rest interval. Here, using an M1 seed, we show that for the T-FOS, the M1-striatum functional connectivity decreased across blocks; however, for the U-FOS, connectivity within the M1 and between M1 and striatum increased. In addition, in M1, the pattern of within-block signal change, but not signal variability per se, reliably differentiated the two sequences. Only for the U-FOS and only within the first blocks in each pair, the signal significantly decreased. No such modulation was found within the second corresponding blocks following the brief rest interval in either FOS. We propose that a network including M1 and striatum underlies online motor working memory. This network may promote a transient integrated representation of a new movement sequence and readily retrieves a previously established movement sequence representation. Averaging over single events or blocks may not capture the dynamics of motor representations that occur over multiple timescales.


Assuntos
Mapeamento Encefálico , Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/irrigação sanguínea , Vias Neurais/irrigação sanguínea , Sistemas On-Line , Oxigênio/sangue , Adulto Jovem
5.
J Cogn Neurosci ; 26(12): 2716-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24893741

RESUMO

An almost universally accepted tacit expectation is that learning and memory consolidation processes must be reflected in the average brain activity in brain areas relevant to task performance. Motor cortex (M1) plasticity has been implicated in motor skill acquisition and its consolidation. Nevertheless, no consistent pattern of changes in the average signal, related to motor learning or motor memory consolidation following a single session of training, has emerged from imaging studies. Here we show that the pattern and magnitude of short-term brain activity modulations in response to task repetition, in M1, may provide a robust signature for effective motor memory consolidation processes. We studied participants during the paced performance of a finger-to-thumb opposition sequence (FOS), intensively trained a day earlier, and a similarly constructed untrained FOS. In addition to within-session "on-line" gains, most participants expressed delayed, consolidation-phase gains in the performance of the trained FOS. The execution of the trained FOS induced repetition enhancements in the contralateral M1 and bilaterally in the medial-temporal lobes, offsetting novelty-related repetition suppression effects. Moreover, the M1 modulations were positively correlated with the magnitude of each participant's overnight delayed gains but not with absolute performance levels. Our results suggest that short-term enhancements of brain signals upon task repetition reflect the effectiveness of overnight motor memory consolidation. We propose that procedural memory consolidation processes may affect the excitation-inhibition balance within cortical representations of the trained movements; this new balance is better reflected in repetition effects than in the average level of evoked neural activity.


Assuntos
Mapeamento Encefálico , Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Ensino , Adulto , Análise de Variância , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imaginação , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/irrigação sanguínea , Oxigênio/sangue , Estatística como Assunto , Adulto Jovem
6.
Neuropsychologia ; 188: 108652, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527734

RESUMO

The current study examined whether adults with Developmental Dyslexia are impaired in learning linguistic regularities in a novel language, and whether this may be explained by a domain general deficit in the effect of sleep on consolidation. We compared online learning and offline consolidation of morphological regularities in individuals with Developmental Dyslexia (N = 40) and typical readers (N = 38). Participants learned to apply plural inflections to novel words based on morpho-phonological rules embedded in the input and learned to execute a finger motor sequence task. To test the effects of time and sleep on consolidation, participants were assigned into one of two sleep-schedule groups, trained in the evening or in the morning and tested 12 and 24 h later. Unlike typical readers, Dyslexic readers did not extract the morpho-phonological regularities during training and as a group they did not show offline gains in inflecting trained items 24 h after training, suggesting that the deficit in extraction of regularities during training may be related to the deficit in consolidation. The offline gains in dyslexic readers, were correlated with their prior phonological abilities, and were less affected by sleep than those of typical readers. Although no deficit was found in the consolidation of the motor task, dyslexic readers were again less successful in generating an abstract representation of the motor sequence, reflected in a difficulty to generalize the motor sequence knowledge acquired using one hand to the untrained hand. The results suggest that individuals with Developmental Dyslexia have a domain general deficit in extracting statistical regularities from an input. Within the language domain this deficit is reflected in reduced benefits of consolidation, particularly during sleep, perhaps due to reduced prior phonological abilities, which may impede the individual's ability to extract the linguistic regularities during and after training and thus constrain the consolidation process.


Assuntos
Dislexia , Adulto , Humanos , Aprendizagem , Idioma , Linguística , Leitura
7.
Neurobiol Lang (Camb) ; 3(2): 180-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37215556

RESUMO

The current study explores the effects of time and sleep on the consolidation of a novel language learning task containing both item-specific knowledge and the extraction of grammatical regularities. We also compare consolidation effects in language and motor sequence learning tasks, to ask whether consolidation mechanisms are domain general. Young adults learned to apply plural inflections to novel words based on morphophonological rules embedded in the input, and learned to type a motor sequence using a keyboard. Participants were randomly assigned into one of two groups, practicing each task during either the morning or evening hours. Both groups were retested 12 and 24 hours post-training. Performance on frequent trained items in the language task stabilized only following sleep, consistent with a hippocampal mechanism for item-specific learning. However, regularity extraction, indicated by generalization to untrained items in the linguistic task, as well as performance on motor sequence learning, improved 24 hours post-training, irrespective of the timing of sleep. This consolidation process is consistent with a frontostriatal skill-learning mechanism, common across the language and motor domains. This conclusion is further reinforced by cross-domain correlations at the individual level between improvement across 24 hours in the motor task and in the low-frequency trained items in the linguistic task, which involve regularity extraction. Taken together, our results at the group and individual levels suggest that some aspects of consolidation are shared across the motor and language domains, and more specifically, between motor sequence learning and grammar learning.

8.
Neuropsychologia ; 167: 108161, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35041839

RESUMO

Patients with Parkinson's disease, who lose the dopaminergic projections to the striatum, are impaired in certain aspects of motor learning. Recent evidence suggests that, in addition to its role in motor performance, the striatum plays a key role in the memory of motor learning. Whether Parkinson's patients have impaired motor memory and whether motor memory is modulated by dopamine at the time of initial learning is unknown. To address these questions, we measured memory of a learned motor sequence in Parkinson's patients who were either On or Off their dopaminergic medications at the time of initial learning. We compared them to a group of older and younger controls. Contrary to our predictions, motor memory was not impaired in patients compared to older controls, and was not influenced by dopamine state at the time of initial learning. To probe post-learning consolidation processes, we also tested whether learning a new sequence shortly after learning the initial sequence would interfere with later memory. We found that, in contrast to younger adults, neither older adults nor patients were susceptible to this interference. These findings suggest that motor memory is preserved in Parkinson's patients and raise the possibility that motor memory in patients is supported by compensatory non-dopamine sensitive mechanisms. Furthermore, given the similar performance characteristics observed in the patients and older adults and the absence of an effect of dopamine, these results raise the possibility that aging and Parkinson's disease affect motor memory in similar ways.


Assuntos
Doença de Parkinson , Idoso , Corpo Estriado , Dopamina , Dopaminérgicos/farmacologia , Dopaminérgicos/uso terapêutico , Humanos , Aprendizagem , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico
9.
Commun Biol ; 3(1): 763, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311566

RESUMO

The brain detects deviations from intended behaviors by estimating the mismatch between predicted and actual outcomes. Axiomatic to these computations are salience and valence prediction error signals, which alert the brain to the occurrence and value of unexpected events. Despite the theoretical assertion of these prediction error signals, it is unknown whether and how brain mechanisms underlying their computations support error processing during skilled motor behavior. Here we demonstrate, with functional magnetic resonance imaging, that internal detection, i.e., without externally-provided feedback, of self-generated movement errors evokes instantaneous activity increases within the salience network and delayed lingering decreases within the nucleus accumbens - a key structure in the reward valuation pathway. A widespread suppression within the sensorimotor network was also observed. Our findings suggest that neural computations of salience and valence prediction errors during skilled motor behaviors operate on different time-scales and, therefore, may contribute differentially to immediate and longer-term adaptive processes.


Assuntos
Atividade Motora , Córtex Motor/fisiologia , Movimento , Desempenho Psicomotor , Gânglios da Base/fisiologia , Mapeamento Encefálico , Cognição , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Córtex Motor/diagnóstico por imagem , Reprodutibilidade dos Testes
10.
Front Neurol ; 10: 1242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827459

RESUMO

Recently, an increasing interest in investigating interactions between brain regions using functional connectivity (FC) methods has shifted the initial focus of cognitive neuroimaging research from localizing functional circuits based on task activation to mapping brain networks based on intrinsic FC dynamics. Leveraging the advantages of the latter approach, it has been shown that despite primarily invariant intrinsic organization of the large-scale functional networks, interactions between and within these networks significantly differ between various behavioral and cognitive states. These differences presumably indicate transient reconfiguration of functional connections-an instantaneous process that flexibly mediates and calibrates human behavior according to momentary demands of the environment. Nevertheless, the specificity of these reconfigured FC patterns to the task at hand and their relevance to adaptive processes during learning remain elusive. To address this knowledge gap, we investigated (1) to what extent FC within the somatomotor network is reconfigured during motor skill practice, and (2) how these changes are related to learning. We applied a seed-driven FC approach to data collected during a continuous task-free condition, so-called resting state, and during a motor sequence learning task using functional magnetic resonance imaging. During the task, participants repeatedly performed a short five-element sequence with their non-dominant (left) hand. As predicted, such unimanual sequence production was associated with lateralized activation of the right somatomotor cortex (SMC). Using this "active" region as a seed, here we show that unimanual performance of the motor sequence relies on functional segregation between the two SMC and selective integration between the "active" SMC and supplementary motor area. Whereas, greater segregation between the two SMC was associated with gains in performance rate, greater segregation within the "active" SMC itself was associated with more consistent performance by the end of training. Nether the resting-state FC patterns within the somatomotor network nor their relative modulation by the task state predicted these behavioral benefits of learning. Our results suggest that task-induced FC changes reflect reconfiguration of the connectivity patterns within the somatomotor network rather than a simple amplification or silencing of its intrinsic dynamics. Such reconfiguration not only supports motor behavior but may also predict learning.

11.
Front Aging Neurosci ; 11: 321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824300

RESUMO

The acquisition and retention of motor skills is necessary for everyday functioning in the elderly and may be critical in the context of motor rehabilitation. Recent studies indicate that motor training closely followed by sleep may result in better engagement of procedural ("how to") memory consolidation processes in the elderly. Nevertheless, elderly individuals are mostly morning oriented and a common practice is to time rehabilitation programs to morning hours. Here, we tested whether the time-of-day wherein training is afforded (morning, 8-10:30 a.m., or evening, 6-9 p.m.) affects the long-term outcome of a multi-session motor practice program (10 sessions across 3-4 weeks) in healthy elderly participants. Twenty-nine (15 women) older adults (60-75 years) practiced an explicitly instructed five-element key-press sequence by repeatedly generating the sequence "as fast and accurately as possible." The groups did not differ in terms of sleep habits and quality (1-week long actigraphy); all were morning-oriented individuals. All participants gained robustly from the intervention, shortening sequence tapping duration and retaining the gains (> 90%) at 1-month post-intervention, irrespective of the time-of-day of training. However, retesting at 7-months post-intervention showed that the attrition of the training induced gains was more pronounced in the morning trained group compared to the evening group (76 and 56.5% loss in sequence tapping time; 7/14 and 3/14 participants showed a > 5% decline in accuracy relative to end of training, respectively). Altogether, the results show that morning-oriented older adults effectively acquired skill in the performance of a sequence of finger movements, in both morning and evening practice sessions. However, evening training leads to a significant advantage, over morning training, in the long-term retention of the skill. Evening training should be considered an appropriate time window for motor skill learning in older adults, even in individuals with morning chronotype. The results are in line with the notion that motor training preceding a sleep interval may be better consolidated into long-term memory in the elderly, and thus result in lower forgetting rates.

12.
Elife ; 82019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30882348

RESUMO

Functional magnetic resonance imaging (fMRI) studies investigating the acquisition of sequential motor skills in humans have revealed learning-related functional reorganizations of the cortico-striatal and cortico-cerebellar motor systems accompanied with an initial hippocampal contribution. Yet, the functional significance of these activity-level changes remains ambiguous as they convey the evolution of both sequence-specific knowledge and unspecific task ability. Moreover, these changes do not specifically assess the occurrence of learning-related plasticity. To address these issues, we investigated local circuits tuning to sequence-specific information using multivariate distances between patterns evoked by consolidated or newly acquired motor sequences production. The results reveal that representations in dorsolateral striatum, prefrontal and secondary motor cortices are greater when executing consolidated sequences than untrained ones. By contrast, sequence representations in the hippocampus and dorsomedial striatum becomes less engaged. Our findings show, for the first time in humans, that complementary sequence-specific motor representations evolve distinctively during critical phases of skill acquisition and consolidation.


Assuntos
Vias Eferentes/fisiologia , Aprendizagem , Rede Nervosa/fisiologia , Plasticidade Neuronal , Adolescente , Corpo Estriado/fisiologia , Feminino , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiologia , Adulto Jovem
13.
PLoS One ; 14(1): e0210876, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30653576

RESUMO

Reconsolidation theory posits that upon retrieval, consolidated memories are destabilized and need to be restabilized in order to persist. It has been suggested that experience with a competitive task immediately after memory retrieval may interrupt these restabilization processes leading to memory loss. Indeed, using a motor sequence learning paradigm, we have recently shown that, in humans, interference training immediately after active task-based retrieval of the consolidated motor sequence knowledge may negatively affect its performance levels. Assessing changes in tapping pattern before and after interference training, we also demonstrated that this performance deficit more likely indicates a genuine memory loss rather than an initial failure of memory retrieval. Here, applying a similar approach, we tested the necessity of the hypothetical retrieval-induced destabilization of motor memory to allow its impairment. The impact of memory retrieval on performance of a new motor sequence knowledge acquired during the interference training was also evaluated. Similar to the immediate post-retrieval interference, interference training alone without the preceding active task-based memory retrieval was also associated with impairment of the pre-established motor sequence memory. Performance levels of the sequence trained during the interference training, on the other hand, were impaired only if this training was given immediately after memory retrieval. Noteworthy, an 8-hour interval between memory retrieval and interference allowed to express intact performance levels for both sequences. The current results suggest that susceptibility of the consolidated motor memory to behavioral interference is independent of its active task-based retrieval. Differential effects of memory retrieval on performance levels of the new motor sequence encoded during the interference training further suggests that memory retrieval may influence the way new information is stored by facilitating its integration within the retrieved memory trace. Thus, impairment of the pre-established motor memory may reflect interference from a competing memory trace rather than involve interruption of reconsolidation.


Assuntos
Consolidação da Memória/fisiologia , Adulto , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Rememoração Mental/fisiologia , Modelos Psicológicos , Destreza Motora/fisiologia , Desempenho Psicomotor/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
14.
Sci Rep ; 7(1): 9406, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839217

RESUMO

Animal models suggest that consolidated memories return to their labile state when reactivated and need to be restabilized through reconsolidation processes to persist. Consistent with this notion, post-reactivation pharmacological protein synthesis blockage results in mnemonic failure in hippocampus-dependent memories. It has been proposed that, in humans, post-reactivation experience with a competitive task can also interfere with memory restabilization. However, several studies failed to induce performance deficit implementing this approach. Moreover, even upon effective post-reactivation interference, hindered performance may rapidly recover, raising the possibility of a retrieval rather than a storage deficit. Here, to address these issues in procedural memory domain, we used new learning to interfere with restabilization of motor memory acquired through training on a sequence of finger movements. Only immediate post-reactivation interference was associated with the loss of post-training delayed gains in performance, a hallmark of motor sequence memory consolidation. We also demonstrate that such performance deficit more likely indicates a genuine memory impairment rather than a retrieval failure. However, the reconsolidation view on a reactivation-induced plasticity is not supported. Instead, our results are in line with the integration model according to which new knowledge acquired during the interfering experience, is integrated through its consolidation creating memory competition.


Assuntos
Destreza Motora , Análise e Desempenho de Tarefas , Adulto , Análise de Variância , Feminino , Humanos , Aprendizagem , Masculino , Memória , Consolidação da Memória , Atividade Motora , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA