Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 33(45): 17836-46, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24198373

RESUMO

Dopaminergic signaling profoundly impacts rewarding behaviors, movement, and executive function. The presynaptic dopamine (DA) transporter (DAT) recaptures released DA, thereby limiting synaptic DA availability and maintaining dopaminergic tone. DAT constitutively internalizes and PKC activation rapidly accelerates DAT endocytosis, resulting in DAT surface loss. Longstanding evidence supports PKC-stimulated DAT trafficking in heterologous expression studies. However, PKC-stimulated DAT internalization is not readily observed in cultured dopaminergic neurons. Moreover, conflicting reports implicate both classic and nonclassic endocytic mechanisms mediating DAT trafficking. Prior DAT trafficking studies relied primarily upon chronic gene disruption and dominant-negative protein expression, or were performed in cell lines and cultured neurons, yielding results difficult to translate to adult dopaminergic neurons. Here, we use newly described dynamin inhibitors to test whether constitutive and PKC-stimulated DAT internalization are dynamin-dependent in adult dopaminergic neurons. Ex vivo biotinylation studies in mouse striatal slices demonstrate that acute PKC activation drives native DAT surface loss, and that surface DAT surprisingly partitions between endocytic-willing and endocytic-resistant populations. Acute dynamin inhibition reveals that constitutive DAT internalization is dynamin-independent, whereas PKC-stimulated DAT internalization is dynamin-dependent. Moreover, total internal reflection fluorescence microscopy experiments demonstrate that constitutive DAT internalization occurs equivalently from lipid raft and nonraft microdomains, whereas PKC-stimulated DAT internalization arises exclusively from lipid rafts. Finally, DAT endocytic recycling relies on a dynamin-dependent mechanism that acts in concert with the actin cytoskeleton. These studies are the first comprehensive investigation of native DAT trafficking in ex vivo adult neurons, and reveal that DAT surface dynamics are governed by complex multimodal mechanisms.


Assuntos
Corpo Estriado/metabolismo , Citoesqueleto/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Dinaminas/metabolismo , Endocitose/fisiologia , Animais , Linhagem Celular Tumoral , Corpo Estriado/citologia , Neurônios Dopaminérgicos/citologia , Humanos , Masculino , Camundongos , Transporte Proteico/fisiologia
2.
J Biol Chem ; 287(39): 32354-66, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22846993

RESUMO

The acid-sensitive neuronal potassium leak channel, KCNK3, is vital for setting the resting membrane potential and is the primary target for volatile anesthetics. Recent reports demonstrate that KCNK3 activity is down-regulated by PKC; however, the mechanisms responsible for PKC-induced KCNK3 down-regulation are undefined. Here, we report that endocytic trafficking dynamically regulates KCNK3 activity. Phorbol esters and Group I metabotropic glutamate receptor (mGluR) activation acutely decreased both native and recombinant KCNK3 currents with concomitant KCNK3 surface losses in cerebellar granule neurons and cell lines. PKC-mediated KCNK3 internalization required the presence of both 14-3-3ß and a novel potassium channel endocytic motif, because depleting either 14-3-3ß protein levels or ablating the endocytic motif completely abrogated PKC-regulated KCNK3 trafficking. These results demonstrate that neuronal potassium leak channels are not static membrane residents but are subject to 14-3-3ß-dependent regulated trafficking, providing a straightforward mechanism to modulate neuronal excitability and synaptic plasticity by Group I mGluRs.


Assuntos
Proteínas 14-3-3/metabolismo , Cerebelo/metabolismo , Endocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteína Quinase C/metabolismo , Proteínas 14-3-3/genética , Motivos de Aminoácidos , Animais , Cerebelo/citologia , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Canais de Potássio de Domínios Poros em Tandem/genética , Proteína Quinase C/genética , Transporte Proteico/fisiologia , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
3.
J Neurosci ; 31(39): 13758-70, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21957239

RESUMO

Dopaminergic signaling and plasticity are essential to numerous CNS functions and pathologies, including movement, cognition, and addiction. The amphetamine- and cocaine-sensitive dopamine (DA) transporter (DAT) tightly controls extracellular DA concentrations and half-life. DAT function and surface expression are not static but are dynamically modulated by membrane trafficking. We recently demonstrated that the DAT C terminus encodes a PKC-sensitive internalization signal that also suppresses basal DAT endocytosis. However, the cellular machinery governing regulated DAT trafficking is not well defined. In work presented here, we identified the Ras-like GTPase, Rin (for Ras-like in neurons) (Rit2), as a protein that interacts with the DAT C-terminal endocytic signal. Yeast two-hybrid, GST pull down and FRET studies establish that DAT and Rin directly interact, and colocalization studies reveal that DAT/Rin associations occur primarily in lipid raft microdomains. Coimmunoprecipitations demonstrate that PKC activation regulates Rin association with DAT. Perturbation of Rin function with GTPase mutants and shRNA-mediated Rin knockdown reveals that Rin is critical for PKC-mediated DAT internalization and functional downregulation. These results establish that Rin is a DAT-interacting protein that is required for PKC-regulated DAT trafficking. Moreover, this work suggests that Rin participates in regulated endocytosis.


Assuntos
Membrana Celular/enzimologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Glicoproteínas/metabolismo , Microdomínios da Membrana/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Proteína Quinase C/fisiologia , Animais , Membrana Celular/metabolismo , Células HEK293 , Humanos , Microdomínios da Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Células PC12 , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Ratos , Proteínas ras/metabolismo
4.
J Vis Exp ; (86)2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24747337

RESUMO

Regulated endocytic trafficking is the central mechanism facilitating a variety of neuromodulatory events, by dynamically controlling receptor, ion channel, and transporter cell surface presentation on a minutes time scale. There is a broad diversity of mechanisms that control endocytic trafficking of individual proteins. Studies investigating the molecular underpinnings of trafficking have primarily relied upon surface biotinylation to quantitatively measure changes in membrane protein surface expression in response to exogenous stimuli and gene manipulation. However, this approach has been mainly limited to cultured cells, which may not faithfully reflect the physiologically relevant mechanisms at play in adult neurons. Moreover, cultured cell approaches may underestimate region-specific differences in trafficking mechanisms. Here, we describe an approach that extends cell surface biotinylation to the acute brain slice preparation. We demonstrate that this method provides a high-fidelity approach to measure rapid changes in membrane protein surface levels in adult neurons. This approach is likely to have broad utility in the field of neuronal endocytic trafficking.


Assuntos
Biotina/química , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Química Encefálica , Membrana Celular/química , Membrana Celular/metabolismo , Corpo Estriado/química , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/análise , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Camundongos , Proteínas do Tecido Nervoso/análise , Proteína Quinase C/análise , Proteína Quinase C/metabolismo , Transporte Proteico , Transmissão Sináptica/fisiologia
5.
J Vis Exp ; (34)2009 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20032927

RESUMO

Plasma membrane proteins are a large, diverse group of proteins comprised of receptors, ion channels, transporters and pumps. Activity of these proteins is responsible for a variety of key cellular events, including nutrient delivery, cellular excitability, and chemical signaling. Many plasma membrane proteins are dynamically regulated by endocytic trafficking, which modulates protein function by altering protein surface expression. The mechanisms that facilitate protein endocytosis are complex and are not fully understood for many membrane proteins. In order to fully understand the mechanisms that control the endocytic trafficking of a given protein, it is critical that the protein s endocytic rate be precisely measured. For many receptors, direct endocytic rate measurements are frequently achieved utilizing labeled receptor ligands. However, for many classes of membrane proteins, such as transporters, pumps and ion channels, there is no convenient ligand that can be used to measure the endocytic rate. In the present report, we describe a reversible biotinylation method that we employ to measure the dopamine transporter (DAT) endocytic rate. This method provides a straightforward approach to measuring internalization rates, and can be easily employed for trafficking studies of most membrane proteins.


Assuntos
Biotinilação/métodos , Membrana Celular/metabolismo , Endocitose/fisiologia , Proteínas de Membrana/metabolismo
6.
J Cell Biol ; 181(2): 309-20, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18426978

RESUMO

The endoplasmic reticulum (ER) protein GT1 (UDP-glucose: glycoprotein glucosyltransferase) is the central enzyme that modifies N-linked carbohydrates based upon the properties of the polypeptide backbone of the maturing substrate. GT1 adds glucose residues to nonglucosylated proteins that fail the quality control test, supporting ER retention through persistent binding to the lectin chaperones calnexin and calreticulin. How GT1 functions in its native environment on a maturing substrate is poorly understood. We analyzed the reglucosylation of a maturing model glycoprotein, influenza hemagglutinin (HA), in the intact mammalian ER. GT1 reglucosylated N-linked glycans in the slow-folding stem domain of HA once the nascent chain was released from the ribosome. Maturation mutants that disrupted the oxidation or oligomerization of HA also supported region-specific reglucosylation by GT1. Therefore, GT1 acts as an ER quality control sensor by posttranslationally reglucosylating glycans on slow-folding or nonnative domains to recruit chaperones specifically to critical aberrant regions.


Assuntos
Glucose/metabolismo , Glicoproteínas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Hemaglutininas/metabolismo , Cinética , Plasmídeos , Polissacarídeos/metabolismo , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA