RESUMO
Golden cats have been appreciated since the beginning of the cat fancy. Golden is a modification of the tabby coat. In the Siberian breed, a specific golden phenotype, named sunshine, has been described. Sunshine tabby cats exhibit a warm tone of tabby, a pink nose lacking the black lining and a large light cream area around the nose. Pedigree analyses revealed an autosomal recessive inheritance pattern. A single candidate region was identified by genome-wide association study (GWAS) and homozygosity mapping. Within that region, we identified CORIN (Corin, serine peptidase) as a strong candidate gene, since CORIN variants have been identified in mice and tigers with a golden phenotype and CORIN has been described as a modifier of the ASIP (Agouti Signaling Protein) pathway. A homozygous CORIN:c.2383C>T missense variant was identified in sunshine tabby cats. Segregation of the variant was consistent with recessive inheritance. The variant was also found in three Kurilian bobtail cats and in two ToyBob cats from the 99 Lives dataset but genotyping of 106 cats from 13 breeds failed to identify carriers in cats from other breeds. The CORIN:c.2383C>T variant was predicted to change an arginine to a cysteine at position 795 in the protein: CORIN:p.(Arg795Cys). Finally, hair observation in Siberian cats was consistent with elongated ASIP signaling as golden hair showed a large yellow band instead of the short subapical one usually observed in agouti hair. These results support an association of the Siberian sunshine modification with the CORIN:c.2383C>T variant. The Siberian cat has helped us to decipher one of the golden phenotypes observed in cats and we propose that the CORIN:c.2383C>T variant represents the wbSIB (Siberian recessive wideband) allele in the domestic cat.
Assuntos
Cruzamento , Gatos/genética , Cor de Cabelo/genética , Mutação de Sentido Incorreto , Serina Endopeptidases/genética , Animais , Feminino , Masculino , FenótipoRESUMO
Nuclear positioning is a determining event in several cellular processes, such as fertilization, cell migration, and cell differentiation. The structure and function of muscle cells, which contain hundreds of nuclei, have been shown to rely in part on proper nuclear positioning. Remarkably, in the course of muscle differentiation, nuclear movements along the myotube axis might represent the event required for the even positioning of nuclei in the mature myofiber. Here we analyze nuclear behavior, time in motion, speed, and alignment during myotube differentiation and temporal interference of cytoskeletal microtubule-related motors. Using specific inhibitors, we find that nuclear movement and alignment are microtubule dependent, with 19 microtubule motor proteins implicated in at least one nuclear behavior. We further focus on Kif1c, Kif5b, kif9, kif21b, and Kif1a, which affect nuclear alignment. These results emphasize the different roles of molecular motors in particular mechanisms.