Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biochemistry ; 63(12): 1534-1542, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38804064

RESUMO

Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8) is a crucial epigenetic regulator that plays a multifaceted role in governing a spectrum of vital cellular processes, encompassing proliferation, apoptosis, migration, tumor suppression, and differentiation. It has emerged as a key player in neuronal differentiation by orchestrating the expression of neuronal lineage-committed genes. The present study uncovers the role of ZMYND8 in regulating the Sonic Hedgehog (SHH) signaling axis, which is crucial for neuronal differentiation. Genetic deletion of ZMYND8 leads to a significant reduction in SHH pathway genes, GLI1, and PTCH1 expression during all-trans-retinoic acid (ATRA)-induced differentiation. ZMYND8 and RNA pol II S5P are found to co-occupy the GLI1 and PTCH1 gene promoters, positively impacting their gene transcription upon ATRA treatment. Interestingly, ZMYND8 is found to counteract the inhibitory effects of Cyclopamine that block the upstream SHH pathway protein SMO, resulting in enhanced neurite formation in neuroblastoma cells following their treatment with ATRA. These results indicate that ZMYND8 is an epigenetic regulator of the SHH signaling pathway and has tremendous therapeutic potential in ATRA-mediated differentiation of neuroblastoma.


Assuntos
Diferenciação Celular , Proteínas Hedgehog , Neuroblastoma , Transdução de Sinais , Tretinoína , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Humanos , Diferenciação Celular/efeitos dos fármacos , Tretinoína/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/genética , Linhagem Celular Tumoral , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Animais , Proteínas Supressoras de Tumor
2.
Mol Cell ; 59(4): 698-711, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26236012

RESUMO

We describe a computational approach that integrates GRO-seq and RNA-seq data to annotate long noncoding RNAs (lncRNAs), with increased sensitivity for low-abundance lncRNAs. We used this approach to characterize the lncRNA transcriptome in MCF-7 human breast cancer cells, including >700 previously unannotated lncRNAs. We then used information about the (1) transcription of lncRNA genes from GRO-seq, (2) steady-state levels of lncRNA transcripts in cell lines and patient samples from RNA-seq, and (3) histone modifications and factor binding at lncRNA gene promoters from ChIP-seq to explore lncRNA gene structure and regulation, as well as lncRNA transcript stability, regulation, and function. Functional analysis of selected lncRNAs with altered expression in breast cancers revealed roles in cell proliferation, regulation of an E2F-dependent cell-cycle gene expression program, and estrogen-dependent mitogenic growth. Collectively, our studies demonstrate the use of an integrated genomic and molecular approach to identify and characterize growth-regulating lncRNAs in cancers.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células , Anotação de Sequência Molecular , RNA Longo não Codificante/fisiologia , Sequência de Bases , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Transcriptoma
3.
FASEB J ; 35(9): e21814, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369624

RESUMO

Alteration in glucose homeostasis during cancer metabolism is an important phenomenon. Though several important transcription factors have been well studied in the context of the regulation of metabolic gene expression, the role of epigenetic readers in this regard remains still elusive. Epigenetic reader protein transcription factor 19 (TCF19) has been recently identified as a novel glucose and insulin-responsive factor that modulates histone posttranslational modifications to regulate glucose homeostasis in hepatocytes. Here we report that TCF19 interacts with a non-histone, well-known tumor suppressor protein 53 (p53) and co-regulates a wide array of metabolic genes. Among these, the p53-responsive carbohydrate metabolic genes Tp53-induced glycolysis and apoptosis regulator (TIGAR) and Cytochrome C Oxidase assembly protein 2 (SCO2), which are the key regulators of glycolysis and oxidative phosphorylation respectively, are under direct regulation of TCF19. Remarkably, TCF19 can form different transcription activation/repression complexes which show substantial overlap with that of p53, depending on glucose-mediated variant stress situations as obtained from IP/MS studies. Interestingly, we observed that TCF19/p53 complexes either have CBP or HDAC1 to epigenetically program the expression of TIGAR and SCO2 genes depending on short-term high glucose or prolonged high glucose conditions. TCF19 or p53 knockdown significantly altered the cellular lactate production and led to increased extracellular acidification rate. Similarly, OCR and cellular ATP production were reduced and mitochondrial membrane potential was compromised upon depletion of TCF19 or p53. Subsequently, through RNA-Seq analysis from patients with hepatocellular carcinoma, we observed that TCF19/p53-mediated metabolic regulation is fundamental for sustenance of cancer cells. Together the study proposes that TCF19/p53 complexes can regulate metabolic gene expression programs responsible for mitochondrial energy homeostasis and stress adaptation.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mitocôndrias/genética , Chaperonas Moleculares/genética , Monoéster Fosfórico Hidrolases/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/genética , Adaptação Biológica/genética , Apoptose/genética , Linhagem Celular Tumoral , Metabolismo Energético/genética , Glucose/genética , Células Hep G2 , Homeostase/genética , Humanos , Potencial da Membrana Mitocondrial/genética , Estresse Fisiológico/genética , Ativação Transcricional/genética
4.
Biochemistry ; 59(4): 389-399, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31746185

RESUMO

Transcription factor 19 (TCF19) plays critical roles in type 1 diabetes and the maintenance of pancreatic ß cells. Recent studies have also implicated TCF19 in cell proliferation of hepatic carcinoma and non-small cell lung carcinoma; however, the mechanism underlying this regulation remains elusive. At the molecular level, TCF19 contains two modules, the plant homeodomain (PHD) finger and the forkhead-associated (FHA) domain, of unclear function. Here, we show that TCF19 mediates hepatocellular carcinoma HepG2 cell proliferation through its PHD finger that recognizes trimethylated lysine 4 of histone 3 (H3K4me3). W316 of the PHD finger of TCF19 is one of the critical residues eliciting this function. Whole genome microarray analysis and orthogonal cell-based assays identified a large subset of genes involved in cell survival and proliferation that depend on TCF19. Our data suggest that TCF19 acts as a pro-oncogene in hepatocellular carcinoma cells and that its functional PHD finger is critical in cell proliferation.


Assuntos
Histonas/metabolismo , Fatores de Transcrição/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células Hep G2 , Código das Histonas , Histonas/genética , Humanos , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Metilação , Modelos Moleculares , Dedos de Zinco PHD/fisiologia , Ligação Proteica , Fatores de Transcrição/fisiologia
5.
Biol Reprod ; 102(2): 327-338, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31511857

RESUMO

The ovarian hormones estrogen and progesterone orchestrate the transcriptional programs required to direct functions of the uterus for initiation and maintenance of pregnancy. Estrogen, acting via estrogen receptor alpha, regulates gene expression by activating and repressing distinct genes involved in signaling pathways that regulate cellular and physiological responses including cell division, water influx, and immune cell recruitment. Historically, these transcriptional responses have been postulated to reflect a biphasic physiological response. In this study, we explored the transcriptional responses of the ovariectomized mouse uterus to 17ß-estradiol (E2) by RNA-seq to obtain global expression profiles of protein-coding transcripts (mRNAs) and long noncoding RNAs (lncRNAs) following 0.5, 1, 2, and 6 hours of treatment. The E2-regulated mRNA and lncRNA expression profiles in the mouse uterus indicate an association between lncRNAs and mRNAs that regulate E2-driven pathways and reproductive phenotypes in the mouse. The transient E2-regulated transcriptome is reflected in the time-dependent shifting of biological processes regulated in the uterus in response to E2. Moreover, high expression of some conserved lncRNAs that are E2 regulated in the mouse uterus are predictive of low overall survival in endometrial carcinoma patients (e.g., H19, KCNQ1OT1, MIR17HG, and FTX). Collectively, this study (1) describes a genomic approach for identifying E2-regulated lncRNAs that may serve critical function in the uterus and (2) provides new insights into our understanding of the regulation of hormone-regulated transcriptional responses with implications in pregnancy and endometrial pathologies.


Assuntos
Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma/efeitos dos fármacos , Útero/efeitos dos fármacos , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Bases de Dados Genéticas , Feminino , Ontologia Genética , Neoplasias dos Genitais Femininos/genética , Neoplasias dos Genitais Femininos/metabolismo , Neoplasias dos Genitais Femininos/mortalidade , Humanos , Camundongos , Ovariectomia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Taxa de Sobrevida , Útero/metabolismo
6.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466143

RESUMO

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be "junk" DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


Assuntos
Elementos Facilitadores Genéticos , Estrogênios/metabolismo , RNA Longo não Codificante/metabolismo , Pequeno RNA não Traduzido/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Longo não Codificante/genética , Pequeno RNA não Traduzido/genética , Ativação Transcricional
7.
Vaccines (Basel) ; 12(5)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38793781

RESUMO

Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.

8.
Gynecol Oncol Rep ; 54: 101426, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881561

RESUMO

•ESR1 gene amplification occurs in 7% of uterine carcinosarcoma.•The presence of ESR1 gene amplification in recurrent uterine carcinosarcoma may be targeted by aromatase inhibitors.•ESR1 gene amplification may be identified through immunohistochemical staining for estrogen receptor followed by fluorescence in situ hybridization or tumor targeted gene sequencing.

9.
Interdiscip Med ; 1(4): e20230018, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38089921

RESUMO

Cardiac fibrosis is the excessive accumulation of extracellular matrix components in the heart, leading to reduced cardiac functionality and heart failure. This review provides an overview of the therapeutic applications of nanotechnology for the treatment of cardiac fibrosis. We first delve into the fundamental pathophysiology of cardiac fibrosis, highlighting the key molecular players, including Matrix Metalloproteinases, Transforming Growth Factor-beta, and several growth factors, cytokines, and signaling molecules. Each target presents a unique opportunity to develop targeted nano-therapies. We then focus on recent advancements in nanotechnology and how nanoparticles can be engineered to deliver drugs or therapeutic genes. These advanced delivery approaches have shown significant potential to inhibit fibrosis-promoting factors, thereby mitigating the fibrotic response and potentially reversing disease progression. In addition, we discuss the challenges associated with developing and translating nanotechnology-based drug delivery systems, including ensuring biocompatibility, safety, and regulatory compliance. This review highlights how nanotechnology can bridge the gap between lab research and clinical practice for treating cardiac fibrosis.

10.
Noncoding RNA Res ; 8(3): 282-293, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36970372

RESUMO

Non-coding RNAs (ncRNAs), specifically long ncRNAs (lncRNAs), regulate cellular processes by affecting gene expression at the transcriptional, post-transcriptional, and epigenetic levels. Emerging evidence indicates that pathogenic microbes dysregulate the expression of host lncRNAs to suppress cellular defense mechanisms and promote survival. To understand whether the pathogenic human mycoplasmas dysregulate host lncRNAs, we infected HeLa cells with Mycoplasma genitalium (Mg) and Mycoplasma penumoniae (Mp) and assessed the expression of lncRNAs by directional RNA-seq analysis. HeLa cells infected with these species showed up-and-down regulation of lncRNAs expression, indicating that both species can modulate host lncRNAs. However, the number of upregulated (200 for Mg and 112 for Mp) and downregulated lncRNAs (30 for Mg and 62 for Mp) differ widely between these two species. GREAT analysis of the noncoding regions associated with differentially expressed lncRNAs showed that Mg and Mp regulate a discrete set of lncRNA plausibly related to transcription, metabolism, and inflammation. Further, signaling network analysis of the differentially regulated lncRNAs exhibited diverse pathways such as neurodegeneration, NOD-like receptor signaling, MAPK signaling, p53 signaling, and PI3K signaling, suggesting that both species primarily target signaling mechanisms. Overall, the study's results suggest that Mg and Mp modulate lncRNAs to promote their survival within the host but in distinct manners.

11.
Biochimie ; 211: 1-15, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36809827

RESUMO

Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme that reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Its pivotal role in the cellular processes has been well established by overexpressing, silencing, and knocking down MsrA or deleting the gene encoding MsrA in several species. We are specifically interested in understanding the role of secreted MsrA in bacterial pathogens. To elucidate this, we infected mouse bone marrow-derived macrophages (BMDMs) with recombinant Mycobacterium smegmatis strain (MSM), secreting a bacterial MsrA or M. smegmatis strain (MSC) carrying only the control vector. BMDMs infected with MSM induced higher levels of ROS and TNF-α than BMDMs infected with MSC. The increased ROS and TNF-α levels in MSM-infected BMDMs correlated with elevated necrotic cell death in this group. Further, RNA-seq transcriptome analysis of BMDMs infected with MSC and MSM revealed differential expression of protein and RNA coding genes, suggesting that bacterial-delivered MsrA could modulate the host cellular processes. Finally, KEGG pathway enrichment analysis identified the down-regulation of cancer-related signaling genes in MSM-infected cells, indicating that MsrA can potentially regulate the development and progression of cancer.


Assuntos
Macrófagos , Metionina Sulfóxido Redutases , Mycobacterium smegmatis , Animais , Camundongos , Macrófagos/microbiologia , Metionina/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Biosci Rep ; 42(4)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35438143

RESUMO

Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética
13.
Vaccines (Basel) ; 10(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35632572

RESUMO

Prophylactic vaccination against infectious diseases is one of the most successful public health measures of our lifetime. More recently, therapeutic vaccination against established diseases such as cancer has proven to be more challenging. In the host, cancer cells evade immunologic regulation by multiple means, including altering the antigens expressed on their cell surface or recruiting inflammatory cells that repress immune surveillance. Nevertheless, recent clinical data suggest that two classes of antigens show efficacy for the development of anticancer vaccines: tumor-associated antigens and neoantigens. In addition, many different vaccines derived from antigens based on cellular, peptide/protein, and genomic components are in development to establish their efficacy in cancer therapy. Some vaccines have shown promising results, which may lead to favorable outcomes when combined with standard therapeutic approaches. This review provides an overview of the innate and adaptive immune systems, their interactions with cancer cells, and the development of various different vaccines for use in anticancer therapeutics.

14.
Mol Cancer Res ; 20(11): 1623-1635, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35997635

RESUMO

Long noncoding RNAs have been implicated in many of the hallmarks of cancer. Herein, we found that the expression of lncRNA152 (lnc152; a.k.a. DRAIC), which we annotated previously, is highly upregulated in luminal breast cancer (LBC) and downregulated in triple-negative breast cancer (TNBC). Knockdown of lnc152 promotes cell migration and invasion in LBC cell lines. In contrast, ectopic expression of lnc152 inhibits growth, migration, invasion, and angiogenesis in TNBC cell lines. In mice, lnc152 inhibited the growth of TNBC cell xenografts, as well as metastasis of TNBC cells in an intracardiac injection model. Transcriptome analysis of the xenografts indicated that lnc152 downregulates genes controlling angiogenesis. Using pull down assays followed by LC/MS-MS, we identified RBM47, a known tumor suppressor in breast cancer, as a lnc152-interacting protein. The effects of lnc152 in TNBC cells are mediated, in part, by regulating the expression of RBM47. Collectively, our results demonstrate that lnc152 is an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC. IMPLICATIONS: This study identifies lncRNA152 as an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC by upregulating the expression of the tumor suppressor RBM47. As such, lncRNA152 may serve as a biomarker to track aggressiveness of breast cancer, as well as therapeutic target for treating TNBC.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Invasividade Neoplásica/genética , Neovascularização Patológica/genética , Proteínas de Ligação a RNA/genética , Neoplasias de Mama Triplo Negativas/patologia , RNA Longo não Codificante/genética
15.
Cell Death Dis ; 13(9): 766, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064715

RESUMO

Zinc Finger transcription factors are crucial in modulating various cellular processes, including differentiation. Chromatin reader Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8), an All-Trans Retinoic Acid (ATRA)-responsive gene, was previously shown to play a crucial role in promoting the expression of neuronal-lineage committed genes. Here, we report that ZMYND8 promotes neuronal differentiation by positively regulating canonical MAPT protein-coding gene isoform, a key player in the axonal development of neurons. Additionally, ZMYND8 modulates gene-isoform switching by epigenetically silencing key regulatory regions within the MAPT gene, thereby suppressing the expression of non-protein-coding isoforms such as MAPT213. Genetic deletion of ZMYND8 led to an increase in the MAPT213 that potentially suppressed the parental MAPT protein-coding transcript expression related to neuronal differentiation programs. In addition, ectopic expression of MAPT213 led to repression of MAPT protein-coding transcript. Similarly, ZMYND8-driven transcription regulation was also observed in other neuronal differentiation-promoting genes. Collectively our results elucidate a novel mechanism of ZMYND8-dependent transcription regulation of different neuronal lineage committing genes, including MAPT, to promote neural differentiation.


Assuntos
RNA Longo não Codificante , Diferenciação Celular/genética , Cromatina , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Tretinoína/farmacologia , Proteínas Supressoras de Tumor/metabolismo
16.
Biochemistry ; 50(14): 2780-9, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21425800

RESUMO

Linker histone H1 plays an essential role in chromatin organization. Proper deposition of linker histone H1 as well as its removal is essential for chromatin dynamics and function. Linker histone chaperones perform this important task during chromatin assembly and other DNA-templated phenomena in the cell. Our in vitro data show that the multifunctional histone chaperone NPM1 interacts with linker histone H1 through its first acidic stretch (residues 120-132). Association of NPM1 with linker histone H1 was also observed in cells in culture. NPM1 exhibited remarkable linker histone H1 chaperone activity, as it was able to efficiently deposit histone H1 onto dinucleosomal templates. Overexpression of NPM1 reduced the histone H1 occupancy on the chromatinized template of HIV-1 LTR in TZM-bl cells, which led to enhanced Tat-mediated transactivation. These data identify NPM1 as an important member of the linker histone chaperone family in humans.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Immunoblotting , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Nucleofosmina , Ligação Proteica , Homologia de Sequência de Aminoácidos
17.
Cancer Res ; 81(16): 4174-4182, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34016622

RESUMO

Despite extensive progress in developing anticancer therapies, therapy resistance remains a major challenge that promotes disease relapse. The changes that lead to therapy resistance can be intrinsically present or may be initiated during treatment. Genetic and epigenetic heterogeneity in tumors make it more challenging to deal with therapy resistance. Recent advances in genome-wide analyses have revealed that the deregulation of distal gene regulatory elements, such as enhancers, appears in several pathophysiological conditions, including cancer. Beyond the conventional function of enhancers in recruiting transcription factors to gene promoters, enhancer elements are also transcribed into noncoding RNAs known as enhancer RNAs (eRNA). Accumulating evidence suggests that uncontrolled enhancer activity with aberrant eRNA expression promotes oncogenesis. Interestingly, tissue-specific, transcribed eRNAs from active enhancers can serve as potential therapeutic targets or biomarkers in several cancer types. This review provides a comprehensive overview of the mechanisms of enhancer transcription and eRNAs as well as their potential roles in cancer and drug resistance.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias/genética , Transcrição Gênica , Animais , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Camundongos , Recidiva Local de Neoplasia , Neoplasias/metabolismo , Oncogenes , Sequências Reguladoras de Ácido Nucleico
18.
Front Immunol ; 12: 738431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707609

RESUMO

Mycoplasma genitalium and M. pneumoniae are two significant mycoplasmas that infect the urogenital and respiratory tracts of humans. Despite distinct tissue tropisms, they both have similar pathogenic mechanisms and infect/invade epithelial cells in the respective regions and persist within these cells. However, the pathogenic mechanisms of these species in terms of bacterium-host interactions are poorly understood. To gain insights on this, we infected HeLa cells independently with M. genitalium and M. pneumoniae and assessed gene expression by whole transcriptome sequencing (RNA-seq) approach. The results revealed that HeLa cells respond to M. genitalium and M. pneumoniae differently by regulating various protein-coding genes. Though there is a significant overlap between the genes regulated by these species, many of the differentially expressed genes were specific to each species. KEGG pathway and signaling network analyses revealed that the genes specific to M. genitalium are more related to cellular processes. In contrast, the genes specific to M. pneumoniae infection are correlated with immune response and inflammation, possibly suggesting that M. pneumoniae has some inherent ability to modulate host immune pathways.


Assuntos
Células Epiteliais/microbiologia , Mycoplasma genitalium/patogenicidade , Mycoplasma pneumoniae/patogenicidade , Transcriptoma , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mycoplasma genitalium/imunologia , Mycoplasma pneumoniae/imunologia , Mapas de Interação de Proteínas , RNA-Seq , Transdução de Sinais , Sequenciamento do Exoma
19.
J Endocr Soc ; 5(11): bvab153, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34703959

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of biological processes. However, the aberrant expression of an isoform from the same lncRNA gene could lead to RNA with altered functions due to changes in their conformations, leading to diseases. Here, we describe a detailed characterization of the gene that encodes long intergenic non-protein-coding RNA 01016 (LINC01016, also known as LncRNA1195) with a focus on its structure, exon usage, and expression in human and macaque tissues. In this study we show that it is among the highly expressed lncRNAs in the testis, exclusively conserved among nonhuman primates, suggesting its recent evolution and is processed into 12 distinct RNAs in testis, cervix, and uterus tissues. Further, we integrate de novo annotation of expressed LINC01016 transcripts and isoform-dependent gene expression analyses to show that human LINC01016 is a multiexon gene, processed through differential exon usage with isoform-specific roles. Furthermore, in cervical, testicular, and uterine cancers, LINC01016 isoforms are differentially expressed, and their expression is predictive of survival in these cancers. This study has revealed an essential aspect of lncRNA biology, rarely associated with coding RNAs, that lncRNA genes are precisely processed to generate isoforms with distinct biological roles in specific tissues.

20.
Mol Cancer Res ; 19(10): 1688-1698, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34158394

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) has gained considerable attention as a target for therapeutic inhibitors in breast cancers. Previously we showed that PARP-1 localizes to active gene promoters to regulate histone methylation and RNA polymerase II activity (Pol II), altering the expression of various tumor-related genes. Here we report a role for PARP-1 in estrogen-dependent transcription in estrogen receptor alpha (ERα)-positive (ER+) breast cancers. Global nuclear run-on and sequencing analyses functionally linked PARP-1 to the direct control of estrogen-regulated gene expression in ER+ MCF-7 breast cancer cells by promoting transcriptional elongation by Pol II. Furthermore, chromatin immunoprecipitation sequencing analyses revealed that PARP-1 regulates the estrogen-dependent binding of ERα and FoxA1 to a subset of genomic ERα binding sites, promoting active enhancer formation. Moreover, we found that the expression levels of the PARP-1- and estrogen-coregulated gene set are enriched in the luminal subtype of breast cancer, and high PARP-1 expression in ER+ cases correlates with poor survival. Finally, treatment with a PARP inhibitor or a transcriptional elongation inhibitor attenuated estrogen-dependent growth of multiple ER+ breast cancer cell lines. Taken together, our results show that PARP-1 regulates critical molecular pathways that control the estrogen-dependent gene expression program underlying the proliferation of ER+ breast cancer cells. IMPLICATIONS: PARP-1 regulates the estrogen-dependent genomic binding of ERα and FoxA1 to regulate critical gene expression programs by RNA Pol II that underlie the proliferation of ER+ breast cancers, providing a potential therapeutic opportunity for PARP inhibitors in estrogen-responsive breast cancers.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Poli(ADP-Ribose) Polimerase-1/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Estrogênios/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Células MCF-7 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , RNA Polimerase II/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA