Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(48): e2003865, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33150725

RESUMO

Solution-processed Cu(In,Ga)(S,Se)2  (CIGS) has a great potential for the production of large-area photovoltaic devices at low cost. However, CIGS solar cells processed from solution exhibit relatively lower performance compared to vacuum-processed devices because of a lack of proper composition distribution, which is mainly instigated by the limited Se uptake during chalcogenization. In this work, a unique potassium treatment method is utilized to improve the selenium uptake judiciously, enhancing grain sizes and forming a wider bandgap minimum region. Careful engineering of the bandgap grading structure also results in an enlarged space charge region, which is favorable for electron-hole separation and efficient charge carrier collection. Besides, this device processing approach has led to a linearly increasing electron diffusion length and carrier lifetime with increasing the grain size of the CIGS film, which is a critical achievement for enhancing photocurrent yield. Overall, 15% of power conversion efficiency is achieved in solar cells processed from environmentally benign solutions. This approach offers critical insights for precise device design and processing rules for solution-processed CIGS solar cells.

2.
Nat Mater ; 8(11): 904-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19820700

RESUMO

The increasing amount of research on solution-processable, organic donor-acceptor bulk heterojunction photovoltaic systems, based on blends of conjugated polymers and fullerenes has resulted in devices with an overall power-conversion efficiency of 6%. For the best devices, absorbed photon-to-electron quantum efficiencies approaching 100% have been shown. Besides the produced current, the overall efficiency depends critically on the generated photovoltage. Therefore, understanding and optimization of the open-circuit voltage (Voc) of organic solar cells is of high importance. Here, we demonstrate that charge-transfer absorption and emission are shown to be related to each other and Voc in accordance with the assumptions of the detailed balance and quasi-equilibrium theory. We underline the importance of the weak ground-state interaction between the polymer and the fullerene and we confirm that Voc is determined by the formation of these states. Our work further suggests alternative pathways to improve Voc of donor-acceptor devices.


Assuntos
Fulerenos/química , Polímeros/química , Eletroquímica , Compostos Orgânicos/química , Fotoquímica , Propriedades de Superfície
3.
ACS Appl Mater Interfaces ; 12(23): 26239-26249, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32410453

RESUMO

High-performance low-band-gap polymer semiconductors are visibly colored, making them unsuitable for transparent and imperceptible electronics without reducing film thickness to the nanoscale range. Herein, we demonstrate polymer/insulator blends exhibiting favorable miscibility that improves the transparency and carrier transport in an organic field-effect transistor (OFET) device. The mesoscale structures leading to more efficient charge transport in ultrathin films relevant to the realization of transparent and flexible electronic applications are explored based on thermodynamic material interaction principles in conjunction with optical and morphological studies. By blending the commodity polymer polystyrene (PS) with two high-performing polymers, PDPP3T and P (NDI2OD-T2) (known as N2200), a drastic difference in morphology and fiber network are observed due to considerable differences in the degree of thermodynamic interaction between the conjugated polymers and PS. Intrinsic material interaction behavior establishes a long-range intermolecular interaction in the PDPP3T polymer fibrillar network dispersed in the majority (80%) PS matrix resulting in a ca. 3-fold increased transistor hole mobility of 1.15 cm2 V-1 s-1 (highest = 1.5 cm2 V-1 s-1) as compared to the pristine material, while PS barely affects the electron mobility in N2200. These basic findings provide important guidelines to achieve high mobility in transparent OFETs.

4.
Data Brief ; 28: 104996, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31909105

RESUMO

Voltage data acquired after probe signal transmitted through the organic film and reflected off the film surface as a function of 0.36 mW millimeter wave signal frequency in the range 110-160 GHz. Five different organic photovoltaic (OPV) materials and one 95:5 blend produced at 2 spin rates are used. These materials are a) fluorinated 2-alkyl-benzol[d] [1-3]triazole (FTAZ), a high hole-mobility polymer used for transistors and photovoltaics, b) diketopyrrolopyrrole (DPP3T), an acceptor polymer used in field-effect transistors (FET), c) Y5(PffBT4T-2OD) film that possesses remarkable temperature controllable morphology, d) a neat conjugated polymer P3HT, Poly(3-(hexylthiophene-2,5diyl) film that is used in optoelectronic devices and as a conductive binder for Li-ion batteries, e) phenyl-C61-butyric acid methyl ester (PCBM) films and its soluble derivatives used as n-type organic semiconductors, and f) excitonic photovoltaic material 95%:5% donor-acceptor blend P3HT:PCBM produced by 2 different spin rates. Measurement of direct-current (dc) transmitted and reflected power (RF voltage signal) are measured using a newly developed continuous wave (CW) D-waveguide band probe (110-160 GHz) apparatus named time-resolved millimeter wave conductivity (TR-mmWC) [1]. Transmission and first surface reflection voltages are captured by a zero-bias Schottky barrier diode (ZBD) and converted to relevant dc voltages. Original voltage signal datasets attached with this can be utilized for photovoltaic, dielectric property estimation, and other semiconductor physics applications. A manually collected dataset of transmission and reflection coefficient at incident probe power level ∼0.9 mW for 95:5 P3HT:PCBM films produced at 2 different spin rates, and one separately only for the neat P3HT film are also presented here in tabular form.

5.
J Am Chem Soc ; 131(33): 11819-24, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19722595

RESUMO

In this article we report the weak but omnipresent electroluminescence (EL) from several types of organic polymer:fullerene bulk heterojunction solar cells biased in the forward direction. The light emitted from blends of some commonly used polymers and the fullerene molecule is significantly different from that of any of the pure materials comprising the blend. The lower energy of the blend EL is found to correlate with both the voltage onset of emission and the open-circuit voltage of the photovoltaic cell under solar illumination. We accordingly interpret the emission to originate from interfacial charge transfer state recombination and emphasize EL as a very valuable tool to characterize the charge transfer state present in donor/acceptor organic photovoltaic (OPV) cells.

6.
Adv Mater ; 29(4)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27897339

RESUMO

A sequential-casting ternary method is developed to create stratified bulk heterojunction (BHJ) solar cells, in which the two BHJ layers are spin cast sequentially without the need of adopting a middle electrode and orthogonal solvents. This method is found to be particularly useful for polymers that form a mechanically alloyed morphology due to the high degree of miscibility in the blend.

7.
ACS Appl Mater Interfaces ; 8(48): 33019-33024, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934179

RESUMO

Charge transport is a central issue in all types of organic electronic devices. In organic films, charge transport is crucially limited by film microstructure and the nature of the substrate/organic interface interactions. In this report, we discuss the influence of active layer thickness on space-charge limited hole transport in pristine polymer and polymer/fullerene bulk heterojunction thin films (∼15-300 nm) in a diode structure. According to the results, the out-of-plane hole mobility in pristine polymers is sensitive to the degree of polymer chain aggregation. Blending the polymers with a fullerene molecule does not change the trend of hole mobility if the polymer tends to make an amorphous structure. However, employing an aggregating polymer in a bulk heterojunction blend gives rise to a marked difference in charge carrier transport behavior compared to the pristine polymer and this difference is sensitive to active layer thickness. In aggregating polymer films, the thickness-dependent interchain interaction was found to have direct impact on hole mobility. The thickness-dependent mobility trend was found to correspond well with the trend of fill factors of corresponding bulk heterojunction solar cells. This investigation has a vital implication for material design and the development of efficient organic electronic devices, including solar cells and light-emitting diodes.

9.
ACS Appl Mater Interfaces ; 5(17): 8440-5, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23980825

RESUMO

We investigated the electrical properties of solution processed Al-doped ZnO (AZO) nanoparticles, stabilized by mixing with a TiOx complex. Thin solid films cast from the solution of AZO-TiOx (AZOTi) (Ti/Zn ∼0.4 in the bulk and ∼0.8 on its surface) is processable in inert environment, without a need for either ambient air exposure for hydrolysis or high temperature thermal annealing commonly applied to buffer layers of most metal-oxides. It was found that the electronic structure of AZOTi matches the electronic structure of several electron acceptor and donor materials used in organic electronic devices, such as solar cells. Inverted solar cells employing a bulk heterojunction film of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester, cast on an indium-tin-oxide/AZOTi electrode, and capped with a tungsten oxide/aluminum back electrode, give rise to a nearly 70% fill factor and an optimized open-circuit voltage as a result of efficient hole blocking behavior of AZOTi. The resulting electron collecting/blocking capability of this material solves crucial interfacial recombination issues commonly observed at the organic/metal-oxide interface in most inverted organic bulk heterojunction solar cells.


Assuntos
Nanopartículas Metálicas/química , Compostos Orgânicos/química , Energia Solar , Titânio/química , Óxido de Zinco/química , Eletrodos , Tiofenos/química , Compostos de Estanho/química
10.
ACS Appl Mater Interfaces ; 5(16): 8225-30, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23910827

RESUMO

Nanoimprinting the photoactive layer of bulk heterojunction (BHJ) organic solar cells is a promising technique for enhancing device performance via improved light absorption. Here, we demonstrate that imprinting poly(3-hexylthiophene) (P3HT) and fullerene BHJ blends leads to adverse morphological changes within the photoactive nanopattern which have been previously overlooked. In particular, nanoimprinting induces a factor of 2 difference in polymer:fullerene composition between the nanopattern posts and interconnecting flash layer that inadvertently moves the composition outside the range for optimal performance. This occurs because of the strong tendency of regioregular P3HT to crystallize since imprinting blends based on amorphous regiorandom P3HT have uniform nanopattern composition. Based on these results, we outline promising design strategies, such as nanoimprinting amorphous polymers, to serve as guidelines for fabricating high-performance nanopatterned BHJ solar cells capable of maximized light absorption.


Assuntos
Fulerenos/química , Polímeros/química , Energia Solar , Tiofenos/química , Absorção , Cristalização , Fontes de Energia Elétrica , Luz
11.
ACS Appl Mater Interfaces ; 4(8): 3846-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22834558

RESUMO

We have investigated the photovoltaic properties of inverted solar cells comprising a bulk heterojunction film of poly(3-hexylthiophene) and phenyl-C(61)-butyric acid methyl ester, sandwiched between an indium-tin-oxide/Al-doped zinc oxide (ZnO-Al) front, and tungsten oxide/aluminum back electrodes. The inverted solar cells convert photons to electrons at an external quantum efficiency (EQE) exceeding 70%. This is a 10-15% increase over EQEs of conventional solar cells. The increase in EQE is not fully explained by the difference in the optical transparency of electrodes, interference effects due to an optical spacer effect of the metal-oxide electrode buffer layers, or variation in charge generation profile. We propose that a large additional splitting of excited states at the ZnO-Al/polymer interface leads to the considerably large photocurrent yield in inverted cells. Our finding provides new insights into the benefits of n-type metal-oxide interlayers in bulk heterojunction solar cells, namely the splitting of excited states and conduction of free electrons simultaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA