Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 12(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39203557

RESUMO

The transition towards a sustainable society involves the utilization of lignocellulosic biomass as a renewable feedstock for materials, fuel, and base chemicals. Lignocellulose consists of cellulose, hemicellulose, and lignin, forming a complex, recalcitrant matrix where efficient enzymatic saccharification is pivotal for accessing its valuable components. This study investigated microbial communities from brackish Lauwersmeer Lake, in The Netherlands, as a potential source of xylan-degrading enzymes. Environmental sediment samples were enriched with wheat arabinoxylan (WAX) and beechwood glucuronoxylan (BEX), with enrichment on WAX showing higher bacterial growth and complete xylan degradation compared to BEX. Metagenomic sequencing revealed communities consisting almost entirely of bacteria (>99%) and substantial shifts in composition during the enrichment. The first generation of seven-day enrichments on both xylans led to a high accumulation of Gammaproteobacteria (49% WAX, 84% BEX), which were largely replaced by Alphaproteobacteria (42% WAX, 69% BEX) in the fourth generation. Analysis of the protein function within the sequenced genomes showed elevated levels of genes associated with the carbohydrate catabolic process, specifically targeting arabinose, xylose, and xylan, indicating an adaptation to the primary monosaccharides present in the carbon source. The data open up the possibility of discovering novel xylan-degrading proteins from other sources aside from the thoroughly studied Bacteroidota.

2.
Enzyme Microb Technol ; 150: 109882, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489035

RESUMO

Glycogen branching enzymes (GBEs; 1,4-α-glucan branching enzyme; E.C. 2.4.1.18) have so far been described to be capable of both α-1,6-transglycosylation (branching) and α-1,4-hydrolytic activity. The aim of the present study was to elucidate the mode of action of three distantly related GBEs from the glycoside hydrolase family 13 by in depth analysis of the activity on a well-defined substrate. For this purpose, the GBEs from R. marinus (RmGBE), P. mobilis (PmGBE1), and B. fibrisolvens (BfGBE) were incubated with a highly pure fraction of a linear substrate of 18 anhydroglucose units. A well-known and characterized branching enzyme from E. coli (EcGBE) was also taken along. Analysis of the chain length distribution over time revealed that, next to hydrolytic and branching activity, all three GBEs were capable of generating chains longer than the substrate, clearly showing α-1,4-transglycosylation activity. Furthermore, the GBEs used those elongated chains for further branching. The sequential activity of elongation and branching enabled the GBEs to modify the substrate to a far larger extent than would have been possible with branching activity alone. Overall, the three GBEs acted ambiguous on the defined substrate. RmGBE appeared to have a strong preference towards transferring chains of nine anhydroglucose units, even during elongation, with a comparably low activity. BfGBE generated an array of elongated chains before using the chains for introducing branches while PmGBE1 exhibited a behaviour intermediate of the other two enzymes. On the basis of the mode of action revealed in this research, an updated model of the mechanism of GBEs was proposed now including the α-1,4-transglycosylation activity.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucanos , Glicogênio , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA