Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Mol Cell Cardiol ; 170: 75-86, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35714558

RESUMO

Long noncoding RNAs (lncRNAs) are critical regulators of inflammation with great potential as new therapeutic targets. However, the role of lncRNAs in early atherosclerosis remains poorly characterized. This study aimed to identify the key lncRNA players in activated endothelial cells (ECs). The lncRNAs in response to pro-inflammatory factors in ECs were screened through RNA sequencing. ICAM-1-related non-coding RNA (ICR) was identified as the most potential candidate for early atherosclerosis. ICR is essential for intercellular adhesion molecule-1 (ICAM1) expression, EC adhesion and migration. In a high fat diet-induced atherosclerosis model in mice, ICR is upregulated in the development of atherosclerosis. After intravenous injection of adenovirus carrying shRNA for mouse ICR, the atherosclerotic plaque area was markedly reduced with the declined expression of ICR and ICAM1. Mechanistically, ICR stabilized the mRNA of ICAM1 in quiescent ECs; while under inflammatory stress, ICR upregulated ICAM1 in a nuclear factor kappa B (NF-κB) dependent manner. RNA-seq analysis showed pro-inflammatory targets of NF-κB were regulated by ICR. Furthermore, the chromatin immunoprecipitation assays showed that p65 binds to ICR promoter and facilitates its transcription. Interestingly, ICR, in turn, promotes p65 accumulation and activity, forming a positive feedback loop to amplify NF-κB signaling. Preventing the degradation of p65 using proteasome inhibitors rescued the expression of NF-κB targets suppressed by ICR. Taken together, ICR acts as an accelerator to amplify NF-κB signaling in activated ECs and suppressing ICR is a promising early intervention for atherosclerosis through ICR/p65 loop blockade.


Assuntos
Aterosclerose , RNA Longo não Codificante , Animais , Aterosclerose/genética , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/genética , Camundongos , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Circ J ; 84(7): 1155-1162, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32404537

RESUMO

BACKGROUND: Circulating microRNAs (miRNA) are potential prognostic biomarkers for cardiovascular disease. We aimed to identify serum miRNA as an effective predictor for coronary artery disease (CAD) events in a general population cohort.Methods and Results:Serum miRNAs associated with CAD were determined by small RNA sequencing and quantitative RT-PCR. Further, the predictive ability of identified serum miRNAs was measured in a general population of 2,812 people. As a main outcome measure, CAD events were collected for 6 years and included acute myocardial infarction and subsequent myocardial infarction. Out of the 48 miRNA candidates, 5 miRNAs (miR-10a-5p, miR-126-3p, miR-210-3p, miR-423-3p and miR-92a-3p) showed better reliability and repeatability in serum. Then, the association of serum levels of the 5 miRNAs with CAD was validated. Furthermore, miR-10a-5p and miR-423-3p, which showed better performance, were tested in the large cohort, with a median follow up of 6.0 years. In multivariable Cox regression analysis, only miR-423-3p (P for trend<0.001) was able to precisely predict CAD events. Moreover, the addition of circulating miR-423-3p with the traditional risk factors together markedly improved the various model performance measures, including the area under the operating characteristics curve (0.782 vs. 0.806), Akaike Information Criterion (965.845 vs. 943.113) and net reclassification improvement (19.18%). CONCLUSIONS: Circulating miR-423-3p can improve the prediction of primary CAD outcomes on the basis of a traditional risk factor model in general population.


Assuntos
MicroRNA Circulante/sangue , Doença da Artéria Coronariana/diagnóstico , MicroRNAs/sangue , Adulto , Biomarcadores/sangue , China/epidemiologia , MicroRNA Circulante/genética , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Medição de Risco , Fatores de Tempo
3.
J Photochem Photobiol B ; 235: 112564, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36116228

RESUMO

Industrial Seedling Raising (ISR) is increasingly becoming an important part of Modern Agriculture because of its efficient utilization of land, water, and fertilizer as well as its advantages of being not easily affected by the weather. However, the high cost and high energy consumption of light sources for plant growth is limiting the popularization of ISR technology. Phosphor-converted light-emitting diodes (pc-LEDs) make use of relatively affordable red phosphor and blue light chips, providing an adjustable spectrum to optimize plant growth. To identify the energy-saving light quality of pc-LEDs, we investigated the effects of a variety of light qualities on the growth of tobacco seedlings. Y3Al5O12:Ce3+, CaAlSiN3:Eu2+, KAl11O17:Eu2+ phosphors were combined with the blue light chip according to different proportions to produce the following light sources: CK (white light), T1 (blue light), T2 (red light), T3 (red: blue light ratio = 1:4), T4 (red: blue light ratio = 4:1). The tobacco variety Xiangyan7 grown continuously under T1, T2, T3, and T4 significantly increased the leaf area, stem length, biomass, root area and main root length compared with those grown under white light. Among the five kinds of light qualities tested, T4 treatment exerted the best effect on leaf development and biomass increase, while T2 exerted the best effect on stem elongation. The cytological analysis demonstrated that the promotion of the cell size and cell number of leaf epidermal cells by T1-T4 might contribute to the leaf expansion. Further analysis at the molecular level suggested that the light quality affected the RNA levels of the genes involved in cell division and expansion. When tobacco seedlings reached the same biomass, T1-T4 light sources saved 71%, 86%, 80% and 89% of electric energy respectively compared with white light. Therefore, the application of specific pc-LEDs not only reduces the cost of light source production, but also saves energy consumption, offering great potential for ISR technology to cut costs and increase efficiency.


Assuntos
Nicotiana , Plântula , Fertilizantes , RNA , Água
4.
JACC Basic Transl Sci ; 7(9): 899-914, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36317131

RESUMO

Based on high-throughput transcriptomic sequencing, SNHG3 was among the most highly expressed long noncoding RNAs in calcific aortic valve disease. SNHG3 upregulation was verified in human and mouse calcified aortic valves. Moreover, in vivo and in vitro studies showed SNHG3 silencing markedly ameliorated aortic valve calcification. In-depth functional assays showed SNHG3 physically interacted with polycomb repressive complex 2 to suppress the H3K27 trimethylation BMP2 locus, which in turn activated BMP2 expression and signaling pathways. Taken together, SNHG3 promoted aortic valve calcification by upregulating BMP2, which might be a novel therapeutic target in human calcific aortic valve disease.

5.
Cardiovasc Res ; 116(10): 1733-1741, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32638018

RESUMO

AIMS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly binds to ACE2 (angiotensin-converting enzyme 2) to facilitate cellular entry. Compared with the lung or respiratory tract, the human heart exhibits greater ACE2 expression. However, little substantial damage was found in the heart tissue, and no viral particles were observed in the cardiac myocytes. This study aims to analyse ACE2 and SARS-CoV-2 spike (S) protein proteases at the single-cell level, to explore the cardiac involvement in COVID-19 and improve our understanding of the potential cardiovascular implications of COVID-19. METHODS AND RESULTS: With meta-analysis, the prevalence of cardiac injury in COVID-19 patients varies from 2% [95% confidence interval (CI) 0-5%, I2 = 0%] in non-ICU patients to 59% (95% CI 48-71%, I2 = 85%) in non-survivors. With public single-cell sequence data analysis, ACE2 expression in the adult human heart is higher than that in the lung (adjusted P < 0.0001). Inversely, the most important S protein cleavage protease TMPRSS2 (transmembrane protease serine protease-2) in the heart exhibits an extremely lower expression than that in the lung (adjusted P < 0.0001), which may restrict entry of SARS-CoV-2 into cardiac cells. Furthermore, we discovered that other S protein proteases, CTSL (cathepsin L) and FURIN (furin, paired basic amino acid cleaving enzyme), were expressed in the adult heart at a similar level to that in the lung, which may compensate for TMPRSS2, mediating cardiac involvement in COVID-19. CONCLUSION: Compared with the lung, ACE2 is relatively more highly expressed in the human heart, while the key S protein priming protease, TMPRSS2, is rarely expressed. The low percentage of ACE2+/TMPRSS2+ cells reduced heart vulnerability to SARS-CoV-2 to some degree. CTSL and FURIN may compensate for S protein priming to mediate SARS-CoV-2 infection of the heart.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/metabolismo , Miocárdio/enzimologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Análise de Célula Única , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Pulmão/metabolismo , Pulmão/virologia , Pandemias , Peptídeo Hidrolases/metabolismo , Proteólise , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA