Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 295(23): 7877-7893, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32332097

RESUMO

Bone-stimulatory therapeutics include bone morphogenetic proteins (e.g. BMP2), parathyroid hormone, and antibody-based suppression of WNT antagonists. Inhibition of the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is both bone anabolic and osteoprotective. EZH2 inhibition stimulates key components of bone-stimulatory signaling pathways, including the BMP2 signaling cascade. Because of high costs and adverse effects associated with BMP2 use, here we investigated whether BMP2 dosing can be reduced by co-treatment with EZH2 inhibitors. Co-administration of BMP2 with the EZH2 inhibitor GSK126 enhanced differentiation of murine (MC3T3) osteoblasts, reflected by increased alkaline phosphatase activity, Alizarin Red staining, and expression of bone-related marker genes (e.g. Bglap and Phospho1). Strikingly, co-treatment with BMP2 (10 ng/ml) and GSK126 (5 µm) was synergistic and was as effective as 50 ng/ml BMP2 at inducing MC3T3 osteoblastogenesis. Similarly, the BMP2-GSK126 co-treatment stimulated osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells, reflected by induction of key osteogenic markers (e.g. Osterix/SP7 and IBSP). A combination of BMP2 (300 ng local) and GSK126 (5 µg local and 5 days of 50 mg/kg systemic) yielded more consistent bone healing than single treatments with either compound in a mouse calvarial critical-sized defect model according to results from µCT, histomorphometry, and surgical grading of qualitative X-rays. We conclude that EZH2 inhibition facilitates BMP2-mediated induction of osteogenic differentiation of progenitor cells and maturation of committed osteoblasts. We propose that epigenetic priming, coupled with bone anabolic agents, enhances osteogenesis and could be leveraged in therapeutic strategies to improve bone mass.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Indóis/farmacologia , Osteogênese/efeitos dos fármacos , Piridonas/farmacologia , Células 3T3 , Animais , Proteína Morfogenética Óssea 2/administração & dosagem , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Indóis/administração & dosagem , Camundongos , Osteoblastos/efeitos dos fármacos , Piridonas/administração & dosagem
2.
J Biol Chem ; 293(49): 19001-19011, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30327434

RESUMO

Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the role of Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre, Osx1-Cre, and Col2a1-Cre drivers, respectively. WT and conditional knockout mice were phenotypically assessed by gross morphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated using RNA-Seq, histologic evaluation, and Western blotting. Aged mice with Ezh2 deficiency were also evaluated for premature development of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age but caused no other gross developmental effects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3 lysine 27 (H3K27me3) and altered differentiation in vitro RNA-Seq analysis revealed enrichment of an osteogenic gene expression profile in Ezh2-deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes without inducing excessive hypertrophy or premature osteoarthritis in vivo In summary, loss of Ezh2 reduced H3K27me3 levels, increased the expression of osteogenic genes in chondrocytes, and resulted in a transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondral ossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage commitment.


Assuntos
Cartilagem/metabolismo , Condrócitos/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Osteogênese/fisiologia , Animais , Diferenciação Celular/fisiologia , Condrogênese , Técnicas de Silenciamento de Genes , Histonas/química , Histonas/metabolismo , Lisina/química , Metilação , Camundongos , Transcriptoma
3.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38366552

RESUMO

Burgeoning evidence suggests that circulating tumor cells (CTCs) may disseminate into blood vessels at an early stage, seeding metastases in various cancers such as breast and prostate cancer. Simultaneously, the early-stage CTCs that settle in metastatic sites [termed disseminated tumor cells (DTCs)] can enter dormancy, marking a potential source of late recurrence and therapy resistance. Thus, the presence of these early CTCs poses risks to patients but also holds potential benefits for early detection and treatment and opportunities for possibly curative interventions. This review delves into the role of early DTCs in driving latent metastasis within breast and prostate cancer, emphasizing the importance of early CTC detection in these diseases. We further explore the correlation between early CTC detection and poor prognoses, which contribute significantly to increased cancer mortality. Consequently, the detection of CTCs at an early stage emerges as a critical imperative for enhancing clinical diagnostics and allowing for early interventions.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Neoplasias da Próstata , Humanos , Masculino , Detecção Precoce de Câncer , Neoplasias da Próstata/diagnóstico , Feminino , Neoplasias da Mama/diagnóstico
4.
Cartilage ; 13(1_suppl): 948S-956S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-31617404

RESUMO

OBJECTIVE: This study aims to (1) determine and validate living cartilage allograft transplantation as a novel source for viable osteochondral allograft (OCA) tissues and (2) perform histologic and viability comparisons of living donor cartilage tissues to currently available clinical-grade standard processed grafts. DESIGN: Using healthy cartilage from well-preserved contralateral compartments in 27 patients undergoing total knee arthroplasty (TKA) and 10 clinical-grade OCA specimens obtained immediately following operative implantation, standard and living donor OCA quality was evaluated at the time of harvest and following up to 3 weeks of storage on the basis of macroscopic International Cartilage Repair Society grade, histology, and viability. RESULTS: Osteochondral samples demonstrated a consistent decrease in viability and histologic quality over the first 3 weeks of storage at 37°C, supporting the utility of an OCA paradigm shift toward early implantation, as was the clinical standard up until recent adoption of transplantation at 14 to 35 days following donor procurement. Samples from the 10 clinical-grade OCAs, implanted at an average of 23 days following graft harvest demonstrated a mean viable cell density of 45.6% at implantation, significantly lower (P < 0.01) than the 93.6% viability observed in living donor allograft tissues. CONCLUSIONS: Osteochondral tissue viability and histologic quality progressively decreases with ex vivo storage, even when kept at physiologic temperatures. Currently available clinical OCAs are stored for 2 to 5 weeks prior to implantation and demonstrate inferior viability to that of fresh osteochondral tissues that can be made available through the use of a living donor cartilage program.


Assuntos
Aloenxertos/transplante , Condrócitos/transplante , Articulação do Joelho/cirurgia , Doadores Vivos , Preservação de Tecido , Transplante Homólogo/métodos , Cartilagem , Humanos , Coleta de Tecidos e Órgãos
5.
Am J Phys Med Rehabil ; 100(1): 82-91, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657816

RESUMO

PURPOSE: We evaluated biological effects of distinct local anesthetics on human adipose-derived mesenchymal stem cells when applied to reduce periprocedural pain during mesenchymal stem cell injections. METHODS AND MATERIALS: Metabolic activity (MTS assay), viability (Live/Dead stain), and gene expression (quantitative real-time reverse-transcriptase polymerase chain reaction) were measured in mesenchymal stem cells incubated with various concentrations of lidocaine, ropivacaine, or bupivacaine during a 12-hr time course. RESULTS: Cell viability and metabolic activity decreased in a dose, time, and substance-specific manner after exposure to lidocaine, ropivacaine, and bupivacaine, with ropivacaine being the least cytotoxic. Cell viability decreases after brief exposure (<1.5 hrs) at clinically relevant concentrations (eg, 8 mg/ml of lidocaine, 2.5 mg/ml of ropivacaine or bupivacaine). Mesenchymal stem cells exposed to local anesthetics change their expression of mRNA biomarkers for stress response (EGR1, EGR2), proliferation (MKI67, HIST2H4A), ECM (COL1A1, COL3A1), and cell surface marker (CD105). CONCLUSIONS: Local anesthetics are cytotoxic to clinical-grade human mesenchymal stem cells in a dose-, time-, and agent-dependent manner and change expression of ECM, proliferation, and cell surface markers. Lidocaine and bupivacaine are more cytotoxic than ropivacaine. Single-dose injections of local anesthetics may affect the biological properties of mesenchymal stem cells in vitro but may not affect the effective dose of MSCs in a clinical setting.


Assuntos
Anestésicos Locais/toxicidade , Bupivacaína/toxicidade , Lidocaína/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Ropivacaina/toxicidade , Amidas/toxicidade , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Mitocôndrias/efeitos dos fármacos
6.
Gene ; 750: 144634, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32240779

RESUMO

Lumbar degenerative disc disease (DDD) is a multifaceted progressive condition and often accompanied by disc herniation (DH) and/or degenerative spondylolisthesis (DS). Given the high prevalence of the disease (up to 20% according to some estimates) and the high costs associated with its care, there is a need to explore novel therapies such as regenerative medicine. Exploring these novel therapies first warrants investigation of molecular pathways underlying these disorders. Here, we show results from next generation RNA sequencing (RNA-seq) on mRNA isolated from 10 human nucleus pulposus (NP) samples of lumbar degenerated discs (DH and DS; n = 5 for each tissue) and other musculoskeletal tissues (Bone, cartilage, growth plate, and muscle; n = 7 for each tissue). Pathway and network analyses based on gene ontology (GO) terms were used to identify the biological functions of differentially expressed mRNAs. A total of 701 genes were found to be significantly upregulated in lumbar NP tissue compared to other musculoskeletal tissues. These differentially expressed mRNAs were primarily involved in DNA damage, immunity and G1/S transition of mitotic cell cycle. Interestingly, DH-specific signaling genes showed major network in chemotactic (e.g., CXCL10, CXCL11, IL1RL2 and IL6) and matrix-degrading pathway (e.g., MMP16, ADAMTSL1, 5, 8, 12, and 15), while DS-specific signaling genes were found to be those involved in cell adhesion (e.g., CDH1, EPHA1 and EFNA2) and inflammatory cytokines (e.g., CD19, CXCL5, CCL24, 25 and XCL2). Our findings provide new leads for therapeutic drug discovery that would permit optimization of medical or pharmacological intervention for cases of lumbar DDD.


Assuntos
Degeneração do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/genética , Espondilolistese/genética , Adulto , Cartilagem/metabolismo , Citocinas/metabolismo , Feminino , Ontologia Genética , Redes Reguladoras de Genes/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Disco Intervertebral/metabolismo , Vértebras Lombares/metabolismo , Masculino , Núcleo Pulposo/metabolismo , RNA Mensageiro/metabolismo
7.
Gene ; 668: 87-96, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29775757

RESUMO

The physis is a well-established and anatomically distinct cartilaginous structure that is crucial for normal long-bone development and growth. Abnormalities in physis function are linked to growth plate disorders and other pediatric musculoskeletal diseases. Understanding the molecular pathways operative in the physis may permit development of regenerative therapies to complement surgically-based procedures that are the current standard of care for growth plate disorders. Here, we performed next generation RNA sequencing on mRNA isolated from human physis and other skeletal tissues (e.g., articular cartilage and bone; n = 7 for each tissue). We observed statistically significant enrichment of gene sets in the physis when compared to the other musculoskeletal tissues. Further analysis of these upregulated genes identified physis-specific networks of extracellular matrix proteins including collagens (COL2A1, COL6A1, COL9A1, COL14A1, COL16A1) and matrilins (MATN1, MATN2, MATN3), and signaling proteins in the WNT pathway (WNT10B, FZD1, FZD10, DKK2) or the FGF pathway (FGF10, FGFR4). Our results provide further insight into the gene expression networks that contribute to the physis' unique structural composition and regulatory signaling networks. Physis-specific expression profiles may guide ongoing initiatives in tissue engineering and cell-based therapies for treatment of growth plate disorders and growth modulation therapies. Furthermore, our findings provide new leads for therapeutic drug discovery that would permit future intervention through pharmacological rather than surgical strategies.


Assuntos
Cartilagem/metabolismo , Transcriptoma , Biomarcadores , Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Perfilação da Expressão Gênica , Músculos/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
8.
Cartilage ; 8(3): 283-299, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28618870

RESUMO

OBJECTIVE: To determine the optimal environmental conditions for chondrogenic differentiation of human adipose tissue-derived mesenchymal stromal/stem cells (AMSCs). In this investigation we specifically investigate the role of oxygen tension and 3-dimensional (3D) culture systems. DESIGN: Both AMSCs and primary human chondrocytes were cultured for 21 days in chondrogenic media under normoxic (21% oxygen) or hypoxic (2% oxygen) conditions using 2 distinct 3D culture methods (high-density pellets and poly-ε-caprolactone [PCL] scaffolds). Histologic analysis of chondro-pellets and the expression of chondrocyte-related genes as measured by reverse transcriptase quantitative polymerase chain reaction were used to evaluate the efficiency of differentiation. RESULTS: AMSCs are capable of expressing established cartilage markers including COL2A1, ACAN, and DCN when grown in chondrogenic differentiation media as determined by gene expression and histologic analysis of cartilage markers. Expression of several cartilage-related genes was enhanced by low oxygen tension, including ACAN and HAPLN1. The pellet culture environment also promoted the expression of hypoxia-inducible cartilage markers compared with cells grown on 3D scaffolds. CONCLUSIONS: Cell type-specific effects of low oxygen and 3D environments indicate that mesenchymal cell fate and differentiation potential is remarkably sensitive to oxygen. Genetic programming of AMSCs to a chondrocytic phenotype is effective under hypoxic conditions as evidenced by increased expression of cartilage-related biomarkers and biosynthesis of a glycosaminoglycan-positive matrix. Lower local oxygen levels within cartilage pellets may be a significant driver of chondrogenic differentiation.

9.
J Orthop Res ; 34(11): 1950-1959, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26909883

RESUMO

Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors. Gene ontology analysis was used to characterize biological pathways associated with differentially expressed genes. Our studies establish reduced levels of mRNAs encoding cartilage related extracellular matrix (ECM) proteins (i.e., COL1A1, COL2A1, COL10A1, ACAN, DCN, HAPLN1, TNC, and COMP) in stored cartilage. These changes occur concomitantly with increased expression of "early response genes" that encode transcription factors mediating stress/cytoprotective responses (i.e., EGR1, EGR2, EGR3, MYC, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, and JUND). The elevated expression of "early response genes" and reduced levels of ECM-related mRNAs in stored cartilage allografts suggests that tissue viability may be maintained by a cytoprotective program that reduces cell metabolic activity. These findings have potential implications for future studies focused on quality assessment and clinical optimization of osteochondral allografts used for cartilage transplantation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1950-1959, 2016.


Assuntos
Cartilagem/metabolismo , Aloenxertos Compostos , Matriz Extracelular/metabolismo , Estresse Fisiológico , Preservação de Tecido , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA