Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Phytother Res ; 37(5): 1924-1937, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36583304

RESUMO

Neuropathic pain (NP) is a chronic disease that affects the normal quality of life of patients. To date, the therapies available are only symptomatic and they are unable to reduce the progression of the disease. Many studies reported the efficacy of Cannabis sativa L. (C. sativa) on NP, but no Δ9 -tetrahydrocannabinol (Δ9 -THC)-free extracts have been investigated in detail for this activity so far. The principal aim of this work is to investigate the potential pain-relieving effect of innovative cannabidiol-rich non-psychotropic C. sativa oils, with a high content of terpenes (K2), compared to the same extract devoid of terpenes (K1). Oral administration of K2 (25 mg kg-1 ) induced a rapid and long-lasting relief of pain hypersensitivity in a mice model of peripheral neuropathy. In spinal cord samples, K2 reduced mitogen-activated protein kinase (MAPKs) levels and neuroinflammatory factors. These effects were reverted by the administration of a CB2 antagonist (AM630), but not by a CB1 antagonist (AM251). Conversely, K1 showed a lower efficacy in the absence of CB1/CB2-mediated mechanisms. In LPS-stimulated murine microglial cells (BV2), K2 reduced microglia pro-inflammatory phenotype through the downregulation of histone deacetylase 1 (HDAC-1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IKBα) and increased interleukin-10 (IL-10) expression, an important antiinflammatory cytokine. In conclusion, these results suggested that K2 oral administration attenuated NP symptoms by reducing spinal neuroinflammation and underline the important role of the synergism between cannabinoids and terpenes.


Assuntos
Canabidiol , Cannabis , Neuralgia , Receptor CB2 de Canabinoide , Animais , Camundongos , Canabidiol/farmacologia , Cannabis/química , Microglia , Neuralgia/tratamento farmacológico , Doenças Neuroinflamatórias , Óleos , Qualidade de Vida , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo
2.
Phytother Res ; 37(10): 4304-4320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37433745

RESUMO

The prevalence of obesity is steadily rising, making safe and more efficient anti-obesity treatments an urgent medical need. Growing evidence correlates obesity and comorbidities, including anxiety and depression, with the development of a low-grade inflammation in peripheral and central tissues. We hypothesized that attenuating neuroinflammation might reduce weight gain and improve mood. We investigated the efficacy of a methanolic extract from Helichrysum stoechas (L.) Moench (HSE), well-known for its anti-inflammatory properties, and its main constituent arzanol (AZL). HPLC-ESI-MS2 and HPLC-UV were used to characterize the extract. HSE effects on mood and feeding behavior was assessed in mice. The mechanism of action of HSE and AZL was investigated in hippocampus samples and SH-SY5Y cells by western blotting and immunofluorescence. Oral administration of HSE for 3 weeks limited weight gain with no significant decrease in food intake. HSE produced an anxiolytic-like and antidepressant-like phenotype comparable to diazepam and amitriptyline, respectively, in the absence of locomotor and cognitive impairments and induced neuroprotective effects in glutamate-exposed SH-SY5Y cells. A dose-dependent reduction of SIRT1 expression was detected in SH-SY5Y cells and in hippocampal samples from HSE-treated mice. The inhibition of the SIRT1-FoxO1 pathway was induced in the hypothalamus. Molecular docking studies proposed a mechanism of SIRT1 inhibition by AZL, confirmed by the evaluation of inhibitory effects on SIRT1 enzymatic activity. HSE limited weight gain and comorbidities through an AZL-mediated SIRT1 inhibition. These activities indicate HSE an innovative therapeutic perspective for obesity and associated mood disorders.

3.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762339

RESUMO

Memory deficit is one of the major negative outcomes of chronic stress. Cholinergic system modulates memory not only through the neuronal cells, but also via interactions with non-neuronal cells, suggesting that microglia can influence synaptic function and plasticity, contributing to cognition and memory function. Withania somnifera (L.) Dunal (WS) and Bacopa monnieri (L.) Wettst (BM), are traditional herbal medicinal products used for the temporary relief of symptoms of stress. The aim of this study was to investigate whether choline (CLN) activity could be enhanced via an association with adaptogens: WS and BM extracts. First, we optimized an in vitro model of corticotropin-releasing hormone (CRH)-induced oxidative stress on microglial BV2 cells. CRH 100 nM reduced BV2 cell viability and induced morphological changes and neurotoxicity after 24 h of microglia stimulation. Moreover, it induced an increase in the production of reactive oxygen species (ROS) and dysregulated antioxidant protein (i.e., SIRT-1 and NRF-2). The association between choline and adaptogens (CBW) 10 µg/mL counteracted the effect of CRH on BV2 cells and reduced the neurotoxicity produced by BV2 CRH-conditioned medium in the SH-SY5Y cell lines. CBW 200 mg/kg produced an ameliorative effect on recognition memory in the novel object recognition test (NORT) test in mice. In conclusion, combining choline with adaptogen plant extracts might represent a promising intervention in chronic stress associated with memory disturbances through the attenuation of microglia-induced oxidative stress.


Assuntos
Bacopa , Neuroblastoma , Síndromes Neurotóxicas , Withania , Humanos , Animais , Camundongos , Neuroproteção , Microglia , Estresse Oxidativo , Colina , Hormônio Liberador da Corticotropina
4.
Phytother Res ; 36(5): 2246-2263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35393641

RESUMO

Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and ß-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases.


Assuntos
Canabidiol , Cannabis , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Citocinas/metabolismo , Endocanabinoides/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Microglia , NF-kappa B/metabolismo , Receptor CB2 de Canabinoide/metabolismo
5.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430790

RESUMO

Growing evidence points to the histamine system as a promising target for the management of neuropathic pain. Preclinical studies reported the efficacy of H3R antagonists in reducing pain hypersensitivity in models of neuropathic pain through an increase of histamine release within the CNS. Recently, a promising efficacy of H4R agonists as anti-neuropathic agents has been postulated. Since H3R and H4R are both localized in neuronal areas devoted to pain processing, the aim of the study is to investigate the role of H4R in the mechanism of anti-hyperalgesic action of the H3R antagonist GSK189254 in the spared nerve injury (SNI) model in mice. Oral (6 mg/kg), intrathecal (6 µg/mouse), or intra locus coeruleus (LC) (10 µg/µL) administration of GSK189254 reversed mechanical and thermal allodynia in the ipsilateral side of SNI mice. This effect was completely prevented by pretreatment with the H4R antagonist JNJ 10191584 (6 µg/mouse i.t.; (10 µg/µL intraLC). Furthermore, GSK189254 was devoid of any anti-hyperalgesic effect in H4R deficient mice, compared with wild type mice. Conversely, pretreatment with JNJ 10191584 was not able to prevent the hypophagic activity of GSK189254. In conclusion, we demonstrated the selective contribution of H4R to the H3R antagonist-induced attenuation of hypernociceptive behavior in SNI mice. These results might help identify innovative therapeutic interventions for neuropathic pain.


Assuntos
Histamina , Neuralgia , Animais , Camundongos , Neuralgia/tratamento farmacológico , Receptores Histamínicos , Benzazepinas/farmacologia , Hiperalgesia/tratamento farmacológico , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/uso terapêutico
6.
Pharmacol Res ; 165: 105431, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33529752

RESUMO

Current treatments for neuropathic pain have often moderate efficacy and present unwanted effects showing the need to develop effective therapies. Accumulating evidence suggests that histone acetylation plays essential roles in chronic pain and the analgesic activity of histone deacetylases (HDACs) inhibitors is documented. Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that interact with acetylated lysine residues on histones, but little is known about their implication in neuropathic pain. Thus, the current study was aimed to investigate the effect of the combination of HDAC and BET inhibitors in the spared nerve injury (SNI) model in mice. Intranasal administration of i-BET762 (BET inhibitor) or SAHA (HDAC inhibitor) attenuated thermal and mechanical hypersensitivity and this antiallodynic activity was improved by co-administration of both drugs. Spinal cord sections of SNI mice showed an increased expression of HDAC1 and Brd4 proteins and combination produced a stronger reduction compared to each epigenetic agent alone. SAHA and i-BET762, administered alone or in combination, counteracted the SNI-induced microglia activation by inhibiting the expression of IBA1, CD11b, inducible nitric oxide synthase (iNOS), the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription-1 (STAT1) with comparable efficacy. Conversely, the epigenetic inhibitors showed a modest effect on spinal proinflammatory cytokines content that was significantly potentiated by their combination. Present results indicate a key role of acetylated histones and their recruitment by BET proteins on microglia-mediated spinal neuroinflammation. Targeting neuropathic pain with the combination of HDAC and BET inhibitors may represent a promising new therapeutic option.


Assuntos
Benzodiazepinas/administração & dosagem , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neuralgia/tratamento farmacológico , Receptores de Superfície Celular/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Epigênese Genética/fisiologia , Histona Desacetilases/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Receptores de Superfície Celular/metabolismo
7.
Pharmacol Res ; 173: 105901, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547384

RESUMO

Despite the intense research on developing new therapies for neuropathic pain states, available treatments have limited efficacy and unfavorable safety profiles. Epigenetic alterations have a great influence on the development of cancer and neurological diseases, as well as neuropathic pain. Histone acetylation has prevailed as one of the well investigated epigenetic modifications in these diseases. Altered spinal activity of histone deacetylase (HDAC) and Bromo and Extra terminal domain (BET) have been described in neuropathic pain models and restoration of these aberrant epigenetic modifications showed pain-relieving activity. Over the last decades HDACs and BETs have been the focus of drug discovery studies, leading to the development of numerous small-molecule inhibitors. Clinical trials to evaluate their anticancer activity showed good efficacy but raised toxicity concerns that limited translation to the clinic. To maximize activity and minimize toxicity, these compounds can be applied in combination of sub-maximal doses to produce additive or synergistic interactions (combination therapy). Recently, of particular interest, dual BET/HDAC inhibitors (multi-target drugs) have been developed to assure simultaneous modulation of BET and HDAC activity by a single molecule. This review will summarize the most recent advances with these strategies, describing advantages and limitations of single drug treatment vs combination regimens. This review will also provide a focus on dual BET/HDAC drug discovery investigations as future therapeutic opportunity for human therapy of neuropathic pain.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Neuralgia/tratamento farmacológico , Proteínas/antagonistas & inibidores , Acetilação , Animais , Quimioterapia Combinada , Epigênese Genética , Histonas/metabolismo , Humanos , Neuralgia/genética , Neuralgia/metabolismo
8.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638733

RESUMO

The importance of precise co- and post-transcriptional processing of RNA in the regulation of gene expression has become increasingly clear. RNA-binding proteins (RBPs) are a class of proteins that bind single- or double-chain RNA, with different affinities and selectivity, thus regulating the various functions of RNA and the fate of the cells themselves. ELAV (embryonic lethal/abnormal visual system)/Hu proteins represent an important family of RBPs and play a key role in the fate of newly transcribed mRNA. ELAV proteins bind AU-rich element (ARE)-containing transcripts, which are usually present on the mRNA of proteins such as cytokines, growth factors, and other proteins involved in neuronal differentiation and maintenance. In this review, we focused on a member of ELAV/Hu proteins, HuR, and its role in the development of neurodegenerative disorders, with a particular focus on demyelinating diseases.


Assuntos
Esclerose Lateral Amiotrófica , Proteína Semelhante a ELAV 1 , Esclerose Múltipla , Atrofia Muscular Espinal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/terapia , Animais , Diferenciação Celular/genética , Citocinas/genética , Citocinas/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/terapia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Bioorg Chem ; 102: 104072, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32693307

RESUMO

A small library of 3-thia-7,9-diazabicyclo[3.3.1]nonanes was synthesized and their opioid receptors affinity and selectivity evaluated. Among these novel sulfur-bridged compounds, the (E) 9-[3'-(3-chlorophenyl)-but-2'-en-1'-yl]-7-propionyl-3-thia-7,9-diazabicyclo[3.3.1]nonane 2i emerged as the derivative with the highest µ receptor affinity (Ki = 85 nM) and selectivity (Ki µ/δ = 58.8, Ki µ/κ > 117.6). The antinociceptive activity of 2i was also evaluated in acute thermal pain. Docking studies disclosed the specific pattern of interactions of these derivatives.


Assuntos
Alcanos/síntese química , Simulação de Acoplamento Molecular/métodos , Enxofre/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
10.
Pain Med ; 18(7): 1334-1343, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27688309

RESUMO

OBJECTIVE: In this study, we compared the efficacy of a combination of PKC-blocker St. John's Wort (SJW) and morphine in mice with painful antiretroviral (2,3-dideoxycitidine [ddC]) and chemotherapic (oxaliplatin) neuropathy. METHODS: Morphine (1 and 5 mg/Kg i.p.), SJW (1 and 5 mg/Kg o.s.), or their combination was administered by systemic injection, and antinociception was determined by using the hot and cold plate tests. RESULTS: Here we demonstrate the ability of SJW to relieve neuropathic pain in mice neuropathic models and a potentiation of morphine antinociception in thermal pain. The potentiating effect shown by SJW was not secondary to its antinociceptive activity as the increase of the morphine antinociceptive effect was produced at a dose (1mg/kg o.s.) devoid of any capability to modulate the pain threshold in neuropathic pain mice. Further examinations of the SJW main components revealed that hypericin was responsible for the potentiating properties whereas flavonoids were ineffective. CONCLUSIONS: These results show that SJW has notable antinociceptive activity for both neuropathic pain models and could be used in neuropathic pain relief alone or in combination with morphine. These data support the utility of combination SJW/opioid therapy in pain management for antinociceptive efficacy by enhancing opioid analgesia.


Assuntos
Modelos Animais de Doenças , Hypericum , Morfina/administração & dosagem , Neuralgia/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Sinergismo Farmacológico , Quimioterapia Combinada , Masculino , Camundongos , Neuralgia/fisiopatologia , Medição da Dor/métodos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Resultado do Tratamento
11.
Planta Med ; 83(5): 412-419, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27191581

RESUMO

Verbascoside (acteoside) possesses various pharmacological properties for human health, including antioxidant, anti-inflammatory, and antineoplastic properties in addition to numerous wound healing and neuroprotective properties, with an excellent and well-known safety profile. However, its poor chemical stability, due to hydrolysis, limits its use in the clinic. To overcome these limitations, we prepared unilamellar liposomal formulations of verbascoside for parenteral administration.Two formulations were prepared: V-L1 and V-L2, where V-L2 contains phospholipid and cholesterol about 4 times higher than the V-L1 sample, and about 2 times higher than verbascoside. The mean particle size of the liposomes prepared was found to be around 120 nm with a polydispersity index < 0.2. Encapsulation efficacy resulted in 30 %. A total of 82.28 ± 1.79 % of verbascoside was released from the liposomes within 24 hours. Liposomes ameliorate the stability of verbascoside by preventing its hydrolysis.The optimized drug delivery formulation was tested in the paw pressure test in two animal models of neuropathic pain: a peripheral mononeuropathy was produced either by a chronic constriction injury of the sciatic nerve or by an intra-articular injection of sodium monoiodoacetate. The performance of the liposomal formulation was compared with that of the free drug.For evaluating the paw pressure test in chronic constriction injury rats, a liposomal formulation administered i. p. at the dosage of 100 mg/kg showed a longer lasting antihyperalgesic effect in comparison with a 100-mg/kg verbascoside saline solution, as well as in the sodium monoiodoacetate models. The effect appeared 15 min after administration and persisted for up to 60 min.


Assuntos
Analgésicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Glucosídeos/administração & dosagem , Neuralgia/tratamento farmacológico , Fenóis/administração & dosagem , Analgésicos/uso terapêutico , Animais , Estabilidade de Medicamentos , Glucosídeos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Lipossomos/química , Camundongos , Fenóis/uso terapêutico , Ratos , Ratos Sprague-Dawley
12.
Proc Natl Acad Sci U S A ; 111(31): 11527-32, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049422

RESUMO

Key factors driving eating behavior are hunger and satiety, which are controlled by a complex interplay of central neurotransmitter systems and peripheral stimuli. The lipid-derived messenger oleoylethanolamide (OEA) is released by enterocytes in response to fat intake and indirectly signals satiety to hypothalamic nuclei. Brain histamine is released during the appetitive phase to provide a high level of arousal in anticipation of feeding, and mediates satiety. However, despite the possible functional overlap of satiety signals, it is not known whether histamine participates in OEA-induced hypophagia. Using different experimental settings and diets, we report that the anorexiant effect of OEA is significantly attenuated in mice deficient in the histamine-synthesizing enzyme histidine decarboxylase (HDC-KO) or acutely depleted of histamine via interocerebroventricular infusion of the HDC blocker α-fluoromethylhistidine (α-FMH). α-FMH abolished OEA-induced early occurrence of satiety onset while increasing histamine release in the CNS with an H3 receptor antagonist-increased hypophagia. OEA augmented histamine release in the cortex of fasted mice within a time window compatible to its anorexic effects. OEA also increased c-Fos expression in the oxytocin neurons of the paraventricular nuclei of WT but not HDC-KO mice. The density of c-Fos immunoreactive neurons in other brain regions that receive histaminergic innervation and participate in the expression of feeding behavior was comparable in OEA-treated WT and HDC-KO mice. Our results demonstrate that OEA requires the integrity of the brain histamine system to fully exert its hypophagic effect and that the oxytocin neuron-rich nuclei are the likely hypothalamic area where brain histamine influences the central effects of OEA.


Assuntos
Encéfalo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Histamina/metabolismo , Ácidos Oleicos/farmacologia , Resposta de Saciedade/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Endocanabinoides , Comportamento Alimentar/efeitos dos fármacos , Histidina Descarboxilase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Tempo
13.
Pharmacology ; 97(3-4): 146-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26821153

RESUMO

BACKGROUND: Oxaliplatin is a platinum compound widely used in the treatment of some solid tumors. Despite its usefulness, oxaliplatin-associated neurotoxicity represents the main dose-limiting factor of this drug. This study examined the structural neuronal effects of oxaliplatin treatment in spinal and supraspinal levels. METHODS: Protein expression was investigated in the mouse cortex, thalamus, periaqueductal grey (PAG) matter and spinal cord (SC) by Western blotting. Thermal nociception was assessed by the hot plate test. RESULTS: Results indicate a reduction in the levels of growth associated protein-43 (GAP43) in the cortex and SC areas at the end of thermal hyperalgesic response, while a decrease in neurofilament-H (NfH) phosphorylation was observed in the SC on day 21 when the pain-related manifestation reaches the neurotoxic peak. Counteracting phosphorylated NfH content increases in the SC and cortex regions at day 28 as a result of the beginning of neuro-regeneration process. We also revealed that the levels of HuD, a neuronal-specific RNA-binding protein, decreased, demonstrating the same temporal and regional expression pattern of GAP43. Oxaliplatin chronic treatment induced a region-specific upregulation of γ isoform of protein kinase C (PKC) within thalamus and PAG, and the administration of a PKC inhibitor suggests that PKC activity in these brain regions must be required to maintain the thermal hyperalgesic state. CONCLUSIONS: These results suggest that changes in the protein levels of the regulatory and structural proteins are due to oxaliplatin-induced neurotoxicity and imply that there is a direct link between structural changes in the central nervous system and chemotherapy-induced neurotoxicity.


Assuntos
Antineoplásicos/farmacologia , Encéfalo/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Compostos Organoplatínicos/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Proteína Semelhante a ELAV 4/metabolismo , Proteína GAP-43/metabolismo , Temperatura Alta/efeitos adversos , Hiperalgesia/metabolismo , Masculino , Camundongos , Proteínas de Neurofilamentos/metabolismo , Oxaliplatina , Dor/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Medula Espinal/metabolismo
14.
Int J Neuropsychopharmacol ; 18(10): pyv045, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25899065

RESUMO

BACKGROUND: The neurobiological changes underlying depression resistant to treatments remain poorly understood, and failure to respond to selective serotonin reuptake inhibitors may result from abnormalities of neurotransmitter systems that excite serotonergic neurons, such as histamine. METHODS: Using behavioral (tail suspension test) and neurochemical (in vivo microdialysis, Western-blot analysis) approaches, here we report that antidepressant responses to selective serotonin reuptake inhibitors (citalopram or paroxetine) are abolished in mice unable to synthesize histamine due to either targeted disruption of histidine decarboxylase gene (HDC(-/-)) or injection of alpha-fluoromethylhistidine, a suicide inhibitor of this enzyme. RESULTS: In the tail suspension test, all classes of antidepressants tested reduced the immobility time of controls. Systemic reboxetine or imipramine reduced the immobility time of histamine-deprived mice as well, whereas selective serotonin reuptake inhibitors did not even though their serotonergic system is functional. In in vivo microdialysis experiments, citalopram significantly increased histamine extraneuronal levels in the cortex of freely moving mice, and methysergide, a serotonin 5-HT1/5-HT2 receptor antagonist, abolished this effect, thus suggesting the involvement of endogenous serotonin. CREB phosphorylation, which is implicated in the molecular mechanisms of antidepressant treatment, was abolished in histamine-deficient mice treated with citalopram. The CREB pathway is not impaired in HDC(-/-) mice, as administration of 8-bromoadenosine 3', 5'-cyclic monophosphate increased CREB phosphorylation, and in the tail suspension test it significantly reduced the time spent immobile by mice of both genotypes. CONCLUSIONS: Our results demonstrate that selective serotonin reuptake inhibitors selectively require the integrity of the brain histamine system to exert their preclinical responses.


Assuntos
Encéfalo/efeitos dos fármacos , Citalopram/farmacologia , Transtorno Depressivo/tratamento farmacológico , Histamina/metabolismo , Paroxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Animais , Antidepressivos/farmacologia , Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transtorno Depressivo/metabolismo , Transtorno Depressivo Resistente a Tratamento/metabolismo , Modelos Animais de Doenças , Feminino , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Masculino , Metilistidinas/metabolismo , Metisergida/farmacologia , Camundongos Knockout , Antagonistas da Serotonina/farmacologia
15.
Pharmacol Res ; 99: 162-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26094781

RESUMO

In the brain, NO is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also importantly involved in many neuronal functions and innumerable roles of NO in many brain related disorders including epilepsy, schizophrenia, drug addiction, anxiety, major depression, have been postulated. The present study aimed to explore the neuronal role exerted by the metal-nonoate compound Ni(PipNONO)Cl, a novel NO donor whose vascular protective effects have been recently demonstrated. Ni(PipNONO)Cl showed antidepressant-like properties in the tail suspension test and antiamnesic activity in the passive avoidance test in the absence of any hypernociceptive response to a mechanical stimulus. These effects were related to the NO-releasing properties of the compound within the central nervous system as demonstrated by the increase of iNOS levels in the brain, spinal cord and dura mater. The modulation of neuronal functions appeared after acute and repeated treatment, showing the lack of any tolerance to neuronal effects. At the dose used (10 mg/kg i.p.), Ni(PipNONO)Cl did not induce any visible sign of toxicity and experiments were performed in the absence of locomotor impairments. In addition to the NO-related neuronal activities of Ni(PipNONO)Cl, the decomposition control compound Ni(Pip)Cl2 showed anxiogenic-like and procognitive effects. The present findings showed neuronal modulatory activity of Ni(PipNONO)Cl through a NO-mediated mechanism. The activities of the decomposition compound Ni(Pip)Cl2 attributed to Ni(PipNONO)Cl the capability to modulate additional neuronal functions independently from NO releasing properties extending and improving the therapeutic perspectives of the NO donor.


Assuntos
Neurônios/efeitos dos fármacos , Níquel/administração & dosagem , Doadores de Óxido Nítrico/administração & dosagem , Piperazinas/administração & dosagem , Animais , Ansiolíticos/administração & dosagem , Antidepressivos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Humanos , Locomoção/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Limiar da Dor/efeitos dos fármacos , Proteína Quinase C-épsilon/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
16.
J Pharmacol Sci ; 124(4): 409-17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24739262

RESUMO

Our purpose was to combine the use of morphine with clinically available inhibitors of protein kinase C (PKC), finally potentiating morphine analgesia in humans. Thermal tests were performed in rodents and humans previously administered with acute or chronic morphine combined or not with increasing doses of the PKC-blocker St. John's Wort (SJW) or its main component hypericin. Phosphorylation of the γ subunit of PKC enzyme was assayed by western blotting in the periaqueductal grey matter (PAG) from rodents co-administered with morphine and hypericin and was prevented in rodent PAG by SJW or hypericin co-administration with morphine, inducing a potentiation of morphine analgesia in thermal pain. The score of pain assessment in healthy volunteers were decreased by 40% when morphine was co-administered with SJW at a dose largely below those used to obtain an antidepressant or analgesic effect in both rodents and humans. The SJW/hypericin potentiating effect lasted in time and preserved morphine analgesia in tolerant mice. Our findings indicate that, in clinical practice, SJW could reduce the dose of morphine obtaining the same analgesic effect. Therefore, SJW and one of its main components, hypericin, appear ideal to potentiate morphine-induced analgesia.


Assuntos
Analgésicos Opioides/farmacologia , Inibidores Enzimáticos/farmacologia , Hypericum , Morfina/farmacologia , Nociceptividade/efeitos dos fármacos , Perileno/análogos & derivados , Extratos Vegetais/farmacologia , Proteína Quinase C/antagonistas & inibidores , Administração Oral , Analgesia , Analgésicos Opioides/administração & dosagem , Animais , Antracenos , Sinergismo Farmacológico , Inibidores Enzimáticos/administração & dosagem , Temperatura Alta , Humanos , Hypericum/química , Masculino , Camundongos , Morfina/administração & dosagem , Medição da Dor/métodos , Substância Cinzenta Periaquedutal/enzimologia , Perileno/administração & dosagem , Perileno/farmacologia , Fosforilação/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Proteína Quinase C/metabolismo
17.
ACS Chem Neurosci ; 15(5): 955-971, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38372253

RESUMO

Alzheimer's disease (AD) is a neurodegenerative form of dementia characterized by the loss of synapses and a progressive decline in cognitive abilities. Among current treatments for AD, acetylcholinesterase (AChE) inhibitors have efficacy limited to symptom relief, with significant side effects and poor compliance. Pharmacological agents that modulate the activity of type-2 cannabinoid receptors (CB2R) of the endocannabinoid system by activating or blocking them have also been shown to be effective against neuroinflammation. Herein, we describe the design, synthesis, and pharmacological effects in vitro and in vivo of dual-acting compounds that inhibit AChE and butyrylcholinesterase (BChE) and target CB2R. Within the investigated series, compound 4g proved to be the most promising. It achieved IC50 values in the low micromolar to submicromolar range against both human cholinesterase isoforms while antagonizing CB2R with Ki of 31 nM. Interestingly, 4g showed neuroprotective effects on the SH-SY5Y cell line thanks to its ability to prevent oxidative stress-induced cell toxicity and reverse scopolamine-induced amnesia in the Y-maze forced alternation test in vivo.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de Canabinoides , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
18.
Pain ; 164(5): 1106-1117, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448971

RESUMO

ABSTRACT: The increased presence of senescent cells in different neurological diseases suggests the contribution of senescence in the pathophysiology of neurodegenerative disorders. Microglia can adapt to any type of disturbance of the homeostasis of the central nervous system, and its altered activity can lead to permanent and unresolvable damage. The aim of this work was to characterize the behavioural phenotype of spared nerve injury mice and then associate it with senescence-related mechanisms. In this work, we investigated the timing of the onset of anxiety, depression, or memory decline associated with peripheral neuropathic pain and their correlation with the presence of microglial cellular senescence. Spared nerve injury mice showed a persistent pain hypersensitivity from 3 days after surgery. Twenty-eight days after nerve injury, they also developed anxiety, depression, and cognitive impairment. The appearance of these symptoms was coincident to a significant increase of senescence markers, such as ß-galactosidase and senescent-associated secretory phenotype, at the microglial level in the spinal cord and hippocampus of spared nerve injury animals. These markers were unaltered at previous time points. In murine immortalized microglial cells (BV2) stimulated with LPS 500 ng/mL for 10 days (4 hours/day) every other day, we observed an increase of ß-galactosidase and senescent-associated secretory phenotype appearance, a reduction of cell viability, and an increase of senescence-associated heterochromatin foci. Therefore, present findings could represent an important step to a better understanding of the pathophysiological cellular mechanisms in comorbidities related to neuropathic pain states.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Microglia/fisiologia , Traumatismos dos Nervos Periféricos/complicações , Medula Espinal , beta-Galactosidase
19.
Antioxidants (Basel) ; 12(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627513

RESUMO

Neuropathic pain (NP) affects about 8% of the general population. Current analgesic therapies have limited efficacy, making NP one of the most difficult to treat pain conditions. Evidence indicates that excessive oxidative stress can contribute to the onset of chronic NP and several natural antioxidant compounds have shown promising efficacy in NP models. Thus, this study aimed to investigate the pain-relieving activity of honokiol (HNK)-rich standardized extract of Magnolia officinalis Rehder & E. Wilson bark (MOE), well known for its antioxidant and anti-inflammatory properties, in the spared nerve injury (SNI) model. The molecular mechanisms and efficacy toward neuroinflammation were investigated in spinal cord samples from SNI mice and LPS-stimulated BV2 microglia cells. MOE and HNK showed antioxidant activity. MOE (30 mg/kg p.o.) produced an antiallodynic effect in SNI mice in the absence of locomotor impairment, reduced spinal p-p38, p-JNK1, iNOS, p-p65, IL-1ß, and Nrf2 overexpression, increased IL-10 and MBP levels and attenuated the Notch signaling pathway by reducing Jagged1 and NEXT. These effects were prevented by the CB1 antagonist AM251. HNK reduced the proinflammatory response of LPS-stimulated BV2 and reduced Jagged1 overexpression. MOE and HNK, by modulating oxidative and proinflammatory responses, might represent interesting candidates for NP management.

20.
Mol Neurobiol ; 60(5): 2661-2677, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36696009

RESUMO

Neuropathic pain is the most difficult-to-treat pain syndrome in multiple sclerosis. Evidence relates neuropathic pain to demyelination, which often originates from unresolved neuroinflammation or altered immune response. Posttranscriptional regulation of gene expression might play a fundamental role in the regulation of these processes. The ELAV RNA-binding proteins HuR and HuD are involved in the promotion of inflammatory phenomena and in neuronal development and maintenance, respectively. Thus, the aim of this study was to investigate the role of HuR and HuD in demyelination-associated neuropathic pain in the mouse experimental autoimmune encephalomyelitis (EAE) model. HuR resulted overexpressed in the spinal cord of MOG35-55-EAE and PLP139-151-EAE mice and was detected in CD11b + cells. Conversely, HuD was largely downregulated in the MOG-EAE spinal cord, along with GAP43 and neurofilament H, while in PLP-EAE mice, HuD and neuronal markers remained unaltered. Intranasal antisense oligonucleotide (ASO) delivery to knockdown HuR, increased myelin basic protein expression, and Luxol Fast Blue staining in both EAE models, an indication of increased myelin content. These effects temporally coincided with attenuation of pain hypersensitivity. Anti-HuR ASO increased the expression of HuD in GAP43-expressing cells and promoted a HuD-mediated neuroprotective activity in MOG-EAE mice, while in PLP-EAE mice, HuR silencing dampened pro-inflammatory responses mediated by spinal microglia activation. In conclusion, anti-HuR ASO showed myelin protection at analgesic doses with multitarget mechanisms, and it deserves further consideration as an innovative agent to counteract demyelination in neuropathic pain states.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Neuralgia , Animais , Camundongos , Modelos Animais de Doenças , Proteínas ELAV/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA