Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Small ; 15(13): e1900205, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30828968

RESUMO

Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as potential clinical tools for cancer theranostics. Membrane-bound 70 kDa heat shock protein (mHsp70) is ubiquitously expressed on the cell membrane of various tumor types but not normal cells and therefore provides a tumor-specific target. The serine protease granzyme B (GrB) that is produced as an effector molecule by activated T and NK cells has been shown to specifically target mHsp70 on tumor cells. Following binding to Hsp70, GrB is rapidly internalized into tumor cells. Herein, it is demonstrated that GrB functionalized SPIONs act as a contrast enhancement agent for magnetic resonance imaging and induce specific tumor cell apoptosis. Combinatorial regimens employing stereotactic radiotherapy and/or magnetic targeting are found to further enhance the therapeutic efficacy of GrB-SPIONs in different tumor mouse models.


Assuntos
Membrana Celular/metabolismo , Granzimas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Terapia Combinada , Dextranos/química , Feminino , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias/diagnóstico por imagem , Ratos Wistar , Nanomedicina Teranóstica
2.
J Biomed Mater Res B Appl Biomater ; 109(4): 584-595, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32935912

RESUMO

Implant-associated soft tissue infections at the skin-implant interface represent the most frequent complications in reconstructive surgery and lead to implant failures and revisions. Titanium implants with deep porosity, called skin-and-bone-integrated-pylons (SBIP), allow for skin ingrowth in the morphologically natural direction, thus restoring a reliable dermal barrier and reducing the risk of infection. Silver coating of the SBIP implant surface using physical vapor deposition technique offers the possibility of preventing biofilm formation and exerting a direct antimicrobial effect during the wound healing phase. In vivo studies employing pig and rabbit dorsum models for assessment of skin ingrowth into the pores of the pylon demonstrated the safety of transcutaneous implantation of the SBIP system. No postoperative complications were reported at the end of the follow-up period of 6 months. Histological analysis proved skin ingrowth in the minipig model without signs of silver toxicity. Analysis of silver release (using energy dispersive X-ray spectroscopy) in the model of intramedullary-inserted silver-coated SBIP in New Zealand rabbits demonstrated trace amounts of silver after 3 months of in-bone implantation. In conclusion, selected temporary silver coating of the SBIP implant surface is powerful at preventing the periprosthetic infections without imparing skin ingrowth and can be considered for clinical application.


Assuntos
Materiais Revestidos Biocompatíveis , Implantes Experimentais , Prata/farmacologia , Infecções dos Tecidos Moles/prevenção & controle , Infecção da Ferida Cirúrgica/prevenção & controle , Cicatrização , Implantes Absorvíveis , Animais , Materiais Revestidos Biocompatíveis/efeitos adversos , Implantes Experimentais/efeitos adversos , Masculino , Teste de Materiais , Metaloproteinases da Matriz/análise , Microscopia Eletrônica de Varredura , Osseointegração , Porosidade , Desenho de Prótese , Coelhos , Prata/administração & dosagem , Pele/lesões , Infecções dos Tecidos Moles/etiologia , Espectrometria por Raios X , Infecção da Ferida Cirúrgica/etiologia , Suínos , Titânio , Cicatrização/efeitos dos fármacos
3.
Front Immunol ; 10: 454, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967859

RESUMO

Heat shock protein 70 (Hsp70) which is expressed on the plasma membrane of highly aggressive tumors including non-small cell lung carcinoma and glioblastoma multiforme serves as a target for Hsp70-targeting NK cells. Herein, we aimed to investigate the antitumor effects of a combined therapy consisting of ex vivo Hsp70-peptide TKD/IL-2-activated NK cells in combination with mouse/human anti-PD-1 antibody in a syngeneic glioblastoma and a xenograft lung cancer mouse model. Mice with membrane Hsp70 positive syngeneic GL261 glioblastoma or human xenograft A549 lung tumors were sham-treated with PBS or injected with ex vivo TKD/IL-2-activated mouse/human NK cells and mouse/human PD-1 antibody either as a single regimen or in combination. Tumor volume was assessed by MR scanning and tumor-infiltrating CD8+ T, NK, and PD-1+ cells were quantified by immunohistochemistry (IHC). We could show that the adoptive transfer of ex vivo TKD/IL-2-activated mouse NK cells or the inhibition of PD-1 resulted in tumor growth delay and an improved overall survival (OS) in a syngeneic glioblastoma mouse model. A combination of both therapies was well-tolerated and significantly more effective with respect to both outcome parameters than either of the single regimens. A combined treatment in a xenograft lung cancer model showed identical effects in immunodeficient mice bearing human lung cancer after adoptive transfer of TKD/IL-2-activated human effector cells and a human PD-1 antibody. Tumor control was associated with a massive infiltration with CD8+ T and NK cells in both tumor models and a decreased in PD-1 expression on immune effector cells. In summary, a combined approach consisting of activated NK cells and anti-PD-1 therapy is safe and results in a long-term tumor control which is accompanied by a massive tumor immune cell infiltration in 2 preclinical tumor models.


Assuntos
Anticorpos Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Glioblastoma , Proteínas de Choque Térmico HSP70/imunologia , Imunoterapia , Células Matadoras Naturais , Neoplasias Pulmonares , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Células K562 , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Células Matadoras Naturais/transplante , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Biomed Mater Res B Appl Biomater ; 107(1): 169-177, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29573163

RESUMO

Periprosthetic infection via skin-implant interface is a leading cause of failures and revisions in direct skeletal attachment of limb prostheses. Implants with deep porosity fabricated with skin and bone integrated pylons (SBIP) technology allow for skin ingrowth through the implant's structure creating natural barrier against infection. However, until the skin cells remodel in all pores of the implant, additional care is required to prevent from entering bacteria to the still nonoccupied pores. Temporary silver coating was evaluated in this work as a means to provide protection from infection immediately after implantation followed by dissolution of silver layer in few weeks. A sputtering coating with 1 µm thickness was selected to be sufficient for fighting infection until the deep ingrowth of skin in the porous structure of the pylon is completed. In vitro study showed less bacterial (Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa) growth on silver coated tablets compared to the control group. Analysis of cellular density of MG-63 cells, fibroblasts, and mesenchymal stem cells (MSCs) showed that silver coating did not inhibit the cell growth on the implants and did not affect cellular functional activity. The in vivo study did not show any postoperative complications during the 6-month observation period in the model of above-knee amputation in rabbits when SBIP implants, either silver-coated or untreated were inserted into the bone residuum. Three-phase scintigraphy demonstrated angiogenesis in the pores of the pylons. The findings suggest that a silver coating with well-chosen specifications can increase the safety of porous implants for direct skeletal attachment. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 169-177, 2019.


Assuntos
Antibacterianos/química , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas , Interface Osso-Implante , Materiais Revestidos Biocompatíveis/química , Implantes Experimentais/microbiologia , Prata/química , Pele , Animais , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Interface Osso-Implante/microbiologia , Interface Osso-Implante/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Porosidade , Coelhos , Pele/microbiologia , Pele/patologia
5.
Adv Healthc Mater ; 5(24): 3182-3190, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27860430

RESUMO

Mesenchymal stem cells (MSCs) are widely used in cell therapy due to their convenience, multiline differentiation potential, reproducible protocols, and biological properties. The potential of MSCs to impregnate magnetic microcapsules and their possible influence on cell function and ability to response to magnetic field have been explored. Interestingly, the cells suspended in media show much higher ability in internalization of microcapsules, then MSCs adhere into the surface. There is no significant effect of microcapsules on cell toxicity compared with other cell line-capsule internalization reported in literature. Due to internalization of magnetic capsules by the cells, such cell engineering platform is responsive to external magnetic field, which allows to manipulate MSC migration. Magnetically sorted MSCs are capable to differentiation as confirmed by their conversion to adipogenic and osteogenic cells using standard protocols. There is a minor effect of capsule internalization on cell adhesion, though MSCs are still able to form spheroid made by dozen of thousand MSCs. This work demonstrates the potential of use of microcapsule impregnated MSCs to carry internalized micron-sized vesicles and being navigated with external magnetic signaling.


Assuntos
Cápsulas/administração & dosagem , Cápsulas/efeitos adversos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Adipogenia/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Humanos , Campos Magnéticos/efeitos adversos , Magnetismo/métodos , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Prosthet Orthot Int ; 39(6): 477-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25249382

RESUMO

BACKGROUND: Direct skeletal attachment of limb prostheses is associated with high rate of transcutaneous infection and loosening of the fixture in the medullary canal prompting for careful assessment of various means for enhancing the skin-device and bone-device interface. The skin and bone integrated pylon system constitutes a technological platform for different modifications being evaluated previously. OBJECTIVES: The current study assessed the combination of nano-treatment skin and bone integrated pylon with its pre-seeding with dermal fibroblasts. We hypothesized that this combination will enhance cell interaction with skin and bone integrated pylon compared to nano-treatment and the fibroblast seeding when done separately. STUDY DESIGN: The feasibility and safety of in-bone implantation of the skin and bone integrated pylon with nanotubes was investigated in vitro and in vivo in the animal model. METHODS: TiO2 nanotubes were fabricated on the skin and bone integrated pylon, and the fibroblasts taken from rabbit's skin were cultured on the pylons before implantation. RESULTS: The in vitro experiments demonstrated higher cellular density in the samples with a nanotubular surface than in the non-modified pylons used as control. There were no postoperative complications in any of the animals during the 6-month observation period. Subsequent scanning electron microscopy of the pylon extracted from the rabbit's femur showed the stable contact between the pylon and soft tissues in comparison to control samples where the patchy fibrovascular ingrowth was detected. CONCLUSION: The promising results prompt further investigation of the integrative properties of the nanotextured skin and bone integrated pylon system seeded with dermal fibroblasts and its optimization for clinical application. CLINICAL RELEVANCE: The study is devoted to the development of more safe and efficient technology of direct skeletal attachment of limb prostheses aimed in improving quality of life of people with amputations.


Assuntos
Membros Artificiais , Fibroblastos/transplante , Osseointegração/fisiologia , Desenho de Prótese/métodos , Alicerces Teciduais/química , Titânio/química , Animais , Bioengenharia/métodos , Osso e Ossos/cirurgia , Estudos de Viabilidade , Fibroblastos/citologia , Modelos Animais , Nanotubos , Implantação de Prótese/métodos , Coelhos , Sensibilidade e Especificidade , Pele
7.
J Biomed Mater Res A ; 102(9): 3033-48, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24115308

RESUMO

Angio- and osteogenesis following the two-stage (TS) implantation of the skin- and bone-integrated pylon seeded with autologous fibroblasts was evaluated. Two consecutive animal substudies were undertaken: intramedullary subcutaneous implantation (15 rabbits) and a TS transcutaneous implantation (12 rabbits). We observed enhanced osseointegrative properties of the intramedullary porous component seeded with fibroblasts induced into osteoblast differentiation, as compared to the untreated porous titanium pylon. The three-phase scintigraphy and subsequent histological analysis showed that the level of osteogenesis was 1.5-fold higher than in the control group, and significantly so (p < 0.05). The biocompatibility was further proved by the absence of inflammatory response or encapsulation and sequestration on the histology assay. Treatment of the transcutaneous component with autologous fibroblasts was associated with nearly a 2-fold decrease in the period required for the ingrowth of dermal and subdermal soft tissues into the implant surface, as compared to the untreated porous titanium component. Direct dermal attachment to the transcutaneous implant prevented superficial and deep periprosthetic infections in rabbits in vivo.


Assuntos
Membros Artificiais , Fibroblastos/transplante , Osseointegração , Osteoblastos/citologia , Alicerces Teciduais/química , Animais , Fibroblastos/citologia , Masculino , Osteogênese , Desenho de Prótese , Coelhos , Titânio/química
8.
Drug Des Devel Ther ; 8: 639-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24920887

RESUMO

Recombinant 70 kDa heat shock protein (Hsp70) is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg). To assess Hsp70's neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia). Rats were then kept alive for 72 hours. The ischemic region was analyzed using a high-field 11 T MRI scanner. Administration of the Hsp70 decreased the infarction zone in a dose-dependent manner with an optimal (threefold) therapeutic response at 5 mg/kg. Long-term treatment of the ischemic rats with Hsp70 formulated in alginate granules with retarded release of protein further reduced the infarct volume in the brain as well as apoptotic area (annexin V staining). Due to its high neurotherapeutic potential, prolonged delivery of Hsp70 could be useful in the management of acute ischemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Proteínas de Choque Térmico HSP70/uso terapêutico , Administração Intravenosa , Animais , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/administração & dosagem , Masculino , Ratos , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico
9.
J Rehabil Res Dev ; 50(5): 709-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24013918

RESUMO

This article presents results on the effectiveness of a new version of the titanium porous composite skin and bone integrated pylon (SBIP). The SBIP is designed for direct skeletal attachment of limb prostheses and was evaluated in a preclinical study with three rabbits. In accordance with the study protocol, a new version of the pylon (SBIP-3) was implanted into the hind leg residuum of three rabbits. The SBIP-3 has side fins that are designed to improve the bond between the bone and pylon. The fins are positioned inside two slots precut in the bone walls; their length can be adjusted to match the thickness of the bone walls. After 13 (animal 1) or 26 (animals 2 and 3) wk, the animals were sacrificed and samples collected for histopathological analysis. The space between the fins and the bone into which they were fit was filled with fibrovascular tissue and woven bone. No substantial inflammation was found. We suggest that if further studies substantiate the present results, the proposed method can become an alternative to the established technique of implanting prostheses into the medullary canal of the hosting bone.


Assuntos
Membros Artificiais , Osso e Ossos/cirurgia , Osseointegração , Implantação de Prótese/métodos , Animais , Osso e Ossos/citologia , Osteogênese , Desenho de Prótese , Coelhos
10.
J Rehabil Res Dev ; 44(5): 723-38, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17943684

RESUMO

This article presents results of the further development and testing of the "skin and bone integrated pylon" (SBIP-1) for percutaneous (through skin) connection of the residual bone with an external limb prosthesis. We investigated a composite structure (called the SBIP-2) made of titanium particles and fine wires using mathematical modeling and mechanical testing. Results showed that the strength of the pylon was comparable with that of anatomical bone. In vitro and in vivo animal studies on 30 rats showed that the reinforcement of the composite pylon did not compromise its previously shown capacity for inviting skin and bone cell ingrowth through the device. These findings provide evidence for the safe and reliable long-term percutaneous transfer of vital and therapeutic substances, signals, and necessary forces and moments from a prosthetic device to the body.


Assuntos
Membros Artificiais , Osso e Ossos/cirurgia , Procedimentos Cirúrgicos Dermatológicos , Osseointegração , Amputação Cirúrgica , Amputados/reabilitação , Animais , Fenômenos Biomecânicos , Osso e Ossos/citologia , Modelos Animais de Doenças , Masculino , Modelos Teóricos , Porosidade , Desenho de Prótese , Ratos , Ratos Wistar , Pele/citologia , Fenômenos Fisiológicos da Pele
11.
J Rehabil Res Dev ; 43(4): 573-80, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17123195

RESUMO

Direct skeletal attachment of limb prostheses is a viable alternative to traditional techniques that are based on a socket-residuum interface. Direct skeletal attachment may be a better or even the only method for patients with a very short residuum and high soft-tissue volume. The problem of integrating the prosthetic pylon with residual skin during direct skeletal attachment of a limb prosthesis has not been solved, and the use of a completely porous prosthetic pylon has not been the subject of focused, systematic research. In this in vivo study, we investigated cell (osteocyte, fibroblast, and keratinocyte) adhesion and penetration into the pores of a titanium pylon implanted in Wistar rats. The porous titanium pylon was implanted in the bone of the thigh residua of four rats. Electronic scanning and morphological analysis demonstrated integration of the pylon with the surrounding skin. These findings support the possibility of developing a natural barrier against the infection associated with direct skeletal attachment of limb prostheses.


Assuntos
Membros Artificiais , Procedimentos Cirúrgicos Dermatológicos , Osseointegração , Fenômenos Fisiológicos da Pele , Animais , Masculino , Modelos Animais , Projetos Piloto , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA