Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Neurochem Res ; 47(2): 470-480, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34623563

RESUMO

Glucose and oxygen (O2) are vital to the brain. Glucose metabolism and mitochondria play a pivotal role in this process, culminating in the increase of reactive O2 species. Hexokinase (HK) is a key enzyme on glucose metabolism and is coupled to the brain mitochondrial redox modulation by recycling ADP for oxidative phosphorylation (OXPHOS). GABA shunt is an alternative pathway to GABA metabolism that increases succinate levels, a Krebs cycle intermediate. Although glucose and GABA metabolisms are intrinsically connected, their interplay coordinating mitochondrial function is poorly understood. Here, we hypothesize that the HK and the GABA shunt interact to control mitochondrial metabolism differently in the cortex and the hypothalamus. The GABA shunt stimulated mitochondrial O2 consumption and H2O2 production higher in hypothalamic synaptosomes (HSy) than cortical synaptosomes (CSy). The GABA shunt increased the HK coupled to OXPHOS activity in both population of synaptosomes, but the rate of activation was higher in HSy than CSy. Significantly, malonate and vigabatrin blocked the effects of the GABA shunt in the HK activity coupled to OXPHOS. It indicates that the glucose phosphorylation is linked to GABA and Krebs cycle reactions. Together, these data shed light on the HK and SDH role on the metabolism of each region fed by GABA turnover, which depends on the neurons' metabolic route.


Assuntos
Glucose , Peróxido de Hidrogênio , Glucose/metabolismo , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/metabolismo , Fosforilação , Ácido gama-Aminobutírico/metabolismo
2.
J Biol Chem ; 295(12): 3773-3782, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31996377

RESUMO

In the presence of galactose, lithium ions activate the unfolded protein response (UPR) by inhibiting phosphoglucomutase activity and causing the accumulation of galactose-related metabolites, including galactose-1-phosphate. These metabolites also accumulate in humans who have the disease classic galactosemia. Here, we demonstrate that Saccharomyces cerevisiae yeast strains harboring a deletion of UBX4, a gene encoding a partner of Cdc48p in the endoplasmic reticulum-associated degradation (ERAD) pathway, exhibit delayed UPR activation after lithium and galactose exposure because the deletion decreases galactose-1-phosphate levels. The delay in UPR activation did not occur in yeast strains in which key ERAD or proteasomal pathway genes had been disrupted, indicating that the ubx4Δ phenotype is ERAD-independent. We also observed that the ubx4Δ strain displays decreased oxygen consumption. The inhibition of mitochondrial respiration was sufficient to diminish galactose-1-phosphate levels and, consequently, affects UPR activation. Finally, we show that the deletion of the AMP-activated protein kinase ortholog-encoding gene SNF1 can restore the oxygen consumption rate in ubx4Δ strain, thereby reestablishing galactose metabolism, UPR activation, and cellular adaption to lithium-galactose challenge. Our results indicate a role for Ubx4p in yeast mitochondrial function and highlight that mitochondrial and endoplasmic reticulum functions are intertwined through galactose metabolism. These findings also shed new light on the mechanisms of lithium action and on the pathophysiology of galactosemia.


Assuntos
Galactose/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lítio/farmacologia , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/metabolismo , Galactose/metabolismo , Galactosefosfatos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Consumo de Oxigênio , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Brain Behav Immun ; 92: 90-101, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33242651

RESUMO

The mitochondrial pyruvate carrier (MPC) is an inner-membrane transporter that facilitates pyruvate uptake from the cytoplasm into mitochondria. We previously reported that MPC1 protein levels increase in the hypothalamus of animals during fever induced by lipopolysaccharide (LPS), but how this increase contributes to the LPS responses remains to be studied. Therefore, we investigated the effect of UK 5099, a classical MPC inhibitor, in a rat model of fever, on hypothalamic mitochondrial function and neuroinflammation in LPS-stimulated preoptic area (POA) primary microcultures. Intracerebroventricular administration of UK 5099 reduced the LPS-induced fever. High-resolution respirometry revealed an increase in oxygen consumption and oxygen flux related to ATP synthesis in the hypothalamic homogenate from LPS-treated animals linked to mitochondrial complex I plus II. Preincubation with UK 5099 prevented the LPS-induced increase in oxygen consumption, ATP synthesis and spare capacity only in complex I-linked respiration and reduced mitochondrial H2O2 production. In addition, treatment of rat POA microcultures with UK 5099 reduced the secretion of the proinflammatory and pyrogenic cytokines TNFα and IL-6 as well as the immunoreactivity of inflammatory transcription factors NF-κB and NF-IL6 four hours after LPS stimulation. These results suggest that the regulation of mitochondrial pyruvate metabolism through MPC inhibition may be effective in reducing neuroinflammation and fever.


Assuntos
Peróxido de Hidrogênio , Transportadores de Ácidos Monocarboxílicos , Animais , Febre/induzido quimicamente , Lipopolissacarídeos , Mitocôndrias , Ácido Pirúvico , Ratos
4.
Exp Parasitol ; 229: 108154, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34481863

RESUMO

The compound 3-bromopyruvate (3-BrPA) is well-known and studies from several researchers have demonstrated its involvement in tumorigenesis. It is an analogue of pyruvic acid that inhibits ATP synthesis by inhibiting enzymes from the glycolytic pathway and oxidative phosphorylation. In this work, we investigated the effect of 3-BrPA on energy metabolism of L. amazonensis. In order to verify the effect of 3-BrPA on L. amazonensis glycolysis, we measured the activity level of three glycolytic enzymes located at different points of the pathway: (i) glucose kinases, step 1, (ii) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), step 6, and (iii) enolase, step 9. 3-BrPA, in a dose-dependent manner, significantly reduced the activity levels of all the enzymes. In addition, 3-BrPA treatment led to a reduction in the levels of phosphofruto-1-kinase (PFK) protein, suggesting that the mode of action of 3-BrPA involves the downregulation of some glycolytic enzymes. Measurement of ATP levels in promastigotes of L. amazonensis showed a significant reduction in ATP generation. The O2 consumption was also significantly inhibited in promastigotes, confirming the energy depletion effect of 3-BrPA. When 3-BrPA was added to the cells at the beginning of growth cycle, it significantly inhibited L. amazonensis proliferation in a dose-dependent manner. Furthermore, the ability to infect macrophages was reduced by approximately 50% when promastigotes were treated with 3-BrPA. Taken together, these studies corroborate with previous reports which suggest 3-BrPA as a potential drug against pathogenic microorganisms that are reliant on glucose catabolism for ATP supply.


Assuntos
Leishmania mexicana/efeitos dos fármacos , Leishmaniose Tegumentar Difusa/parasitologia , Piruvatos/farmacologia , Animais , Western Blotting , Brasil , Cricetinae , Humanos , Leishmania mexicana/enzimologia , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/metabolismo , Macrófagos/parasitologia , Camundongos , Consumo de Oxigênio/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Células RAW 264.7
5.
J Bioenerg Biomembr ; 52(1): 1-15, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31853754

RESUMO

Schizophrenia etiology is unknown, nevertheless imbalances occurring in an acute psychotic episode are important to its development, such as alterations in cellular energetic state, REDOX homeostasis and intracellular Ca2+ management, all of which are controlled primarily by mitochondria. However, mitochondrial function was always evaluated singularly, in the presence of specific respiratory substrates, without considering the plurality of the electron transport system. In this study, mitochondrial function was analyzed under conditions of isolated or multiple respiratory substrates using brain mitochondria isolated from MK-801-exposed mice. Results showed a high H2O2 production in the presence of pyruvate/malate, with no change in oxygen consumption. In the condition of multiple substrates, however, this effect is lost. The analysis of Ca2+ retention capacity revealed a significant change in the uptake kinetics of this ion by mitochondria in MK-801-exposed animals. Futhermore, when mitochondria were exposed to calcium, a total loss of oxidative phosphorylation and an impressive increase in H2O2 production were observed in the condition of multiple substrates. There was no alteration in the activity of the antioxidant enzymes analyzed. The data demonstrate for the first time, in an animal model of psychosis, two important aspects (1) mitochondria may compensate deficiencies in a single mitochondrial complex when they oxidize several substrates simultaneously, (2) Ca2+ handling is compromised in MK-801-exposed mice, resulting in a loss of phosphorylative capacity and an increase in H2O2 production. These data favor the hypothesis that disruption of key physiological roles of mitochondria may be a trigger in acute psychosis and, consequently, schizophrenia.


Assuntos
Encéfalo/patologia , Cálcio/efeitos adversos , Mitocôndrias/patologia , Transtornos Psicóticos/complicações , Doença Aguda , Animais , Humanos , Masculino , Camundongos
6.
An Acad Bras Cienc ; 92(2): e20191340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32813865

RESUMO

Type 2 diabetes mellitus (T2DM) is associated with an increase of premature appearance of several disorders such as cardiac complications. Thus, we test the hypothesis that a combination of a high fat diet (HFD) and low doses of streptozotocin (STZ) recapitulate a suitable mice model of T2DM to study the cardiac mitochondrial disturbances induced by this disease. Animals were divided in 2 groups: the T2DM group was given a HFD and injected with 2 low doses of STZ, while the CNTRL group was given a standard chow and a buffer solution. The combination of HFD and STZ recapitulate the T2DM metabolic profile showing higher blood glucose levels in T2DM mice when compared to CNTRL, and also, insulin resistance. The kidney structure/function was preserved. Regarding cardiac mitochondrial function, in all phosphorylative states, the cardiac mitochondria from T2DM mice presented reduced oxygen fluxes when compared to CNTRL mice. Also, mitochondria from T2DM mice showed decreased citrate synthase activity and lower protein content of mitochondrial complexes. Our results show that in this non-obese T2DM model, which recapitulates the classical metabolic alterations, mitochondrial function is impaired and provides a useful model to deepen study the mechanisms underlying these alterations.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Glicemia , Resistência à Insulina , Camundongos , Mitocôndrias , Estreptozocina
7.
J Biol Chem ; 293(6): 1957-1975, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284679

RESUMO

Alzheimer's disease (AD) is a disabling and highly prevalent neurodegenerative condition, for which there are no effective therapies. Soluble oligomers of the amyloid-ß peptide (AßOs) are thought to be proximal neurotoxins involved in early neuronal oxidative stress and synapse damage, ultimately leading to neurodegeneration and memory impairment in AD. The aim of the current study was to evaluate the neuroprotective potential of mesenchymal stem cells (MSCs) against the deleterious impact of AßOs on hippocampal neurons. To this end, we established transwell cocultures of rat hippocampal neurons and MSCs. We show that MSCs and MSC-derived extracellular vesicles protect neurons against AßO-induced oxidative stress and synapse damage, revealed by loss of pre- and postsynaptic markers. Protection by MSCs entails three complementary mechanisms: 1) internalization and degradation of AßOs; 2) release of extracellular vesicles containing active catalase; and 3) selective secretion of interleukin-6, interleukin-10, and vascular endothelial growth factor to the medium. Results support the notion that MSCs may represent a promising alternative for cell-based therapies in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/citologia , Células-Tronco Mesenquimais/citologia , Neurônios/metabolismo , Estresse Oxidativo , Sinapses/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Animais , Células Cultivadas , Técnicas de Cocultura , Vesículas Extracelulares/genética , Hipocampo/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
J Neurochem ; 149(5): 624-640, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31001830

RESUMO

The adult brain is a high-glucose and oxygen-dependent organ, with an extremely organized network of cells and large energy-consuming synapses. To reach this level of organization, early stages in development must include an efficient control of cellular events and regulation of intracellular signaling molecules and ions such as hydrogen peroxide (H2 O2 ) and calcium (Ca2+ ), but in cerebral tissue, these mechanisms of regulation are still poorly understood. Hexokinase (HK) is the first enzyme in the metabolism of glucose and, when bound to mitochondria (mtHK), it has been proposed to have a role in modulation of mitochondrial H2 O2  generation and Ca2+ handling. Here, we have investigated how mtHK modulates these signals in the mitochondrial context during postnatal development of the mouse brain. Using high-resolution respirometry, western blot analysis, spectrometry and resorufin, and Calcium Green fluorescence assays with brain mitochondria purified postnatally from day 1 to day 60, we demonstrate that brain HK increases its coupling to mitochondria and to oxidative phosphorylation to induce a cycle of ADP entry/ATP exit of the mitochondrial matrix that leads to efficient control over H2 O2 generation and Ca2+ uptake during development until reaching plateau at day 21. This contrasts sharply with the antioxidant enzymes, which do not increase as mitochondrial H2 O2 generation escalates. These results suggest that, as its use of glucose increases, the brain couples HK to mitochondria to improve glucose metabolism, redox balance and Ca2+ signaling during development, positioning mitochondria-bound hexokinase as a hub for intracellular signaling control.


Assuntos
Encéfalo/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Hexoquinase/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Animais , Neurogênese/fisiologia , Fosforilação Oxidativa , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
9.
Exp Physiol ; 104(3): 306-321, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578638

RESUMO

NEW FINDINGS: What is the central question of this study? What are the temporal responses of mitochondrial respiration and mitochondrial responsivity to insulin in soleus muscle fibres from mice during the development of obesity and insulin resistance? What is the main finding and its importance? Short- and long-term feeding with a high-fat diet markedly reduced soleus mitochondrial respiration and mitochondrial responsivity to insulin before any change in glycogen synthesis. Muscle glycogen synthesis and whole-body insulin resistance were present after 14 and 28 days, respectively. Our findings highlight the plasticity of mitochondria during the development of obesity and insulin resistance. ABSTRACT: Recently, significant attention has been given to the role of muscle mitochondrial function in the development of insulin resistance associated with obesity. Our aim was to investigate temporal alterations in mitochondrial respiration, H2 O2 emission and mitochondrial responsivity to insulin in permeabilized skeletal muscle fibres during the development of obesity in mice. Male Swiss mice (5-6 weeks old) were fed with a high-fat diet (60% calories from fat) or standard diet for 7, 14 or 28 days to induce obesity and insulin resistance. Diet-induced obese (DIO) mice presented with reduced glucose tolerance and hyperinsulinaemia after 7 days of high-fat diet. After 14 days, the expected increase in muscle glycogen content after systemic injection of glucose and insulin was not observed in DIO mice. At 28 days, blood glucose decay after insulin injection was significantly impaired. Complex I (pyruvate + malate) and II (succinate)-linked respiration and oxidative phosphorylation (ADP) were decreased after 7 days of high-fat diet and remained low in DIO mice after 14 and 28 days of treatment. Moreover, mitochondria from DIO mice were incapable of increasing respiratory coupling and ADP responsivity after insulin stimulation in all observed periods. Markers of mitochondrial content were reduced only after 28 days of treatment. The mitochondrial H2 O2 emission profile varied during the time course of DIO, with a reduction of H2 O2 emission in the early stages of DIO and an increased emission after 28 days of treatment. Our data demonstrate that DIO promotes transitory alterations in mitochondrial physiology during the early and late stages of insulin resistance related to obesity.


Assuntos
Respiração Celular/efeitos dos fármacos , Insulina/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Obesidade/fisiopatologia , Descanso/fisiologia , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos
10.
J Biol Chem ; 292(34): 14176-14187, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28663370

RESUMO

Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. In vitro studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most in vitro experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system.


Assuntos
Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Flavoproteínas Transferidoras de Elétrons/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Cinética , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Musculares/enzimologia , Especificidade de Órgãos , Oxirredução , Fosforilação Oxidativa , Ácido Palmítico/metabolismo , Ácido Pirúvico/metabolismo
11.
Exp Physiol ; 103(8): 1076-1086, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29893447

RESUMO

NEW FINDINGS: What is the central question of this study? How does an acute session of exercise affect food intake of male Wistar rats? What is the main finding and its importance? Food intake in male Wistar rats is decreased in the first hour after physical exercise independent of the intensity. Moreover, high-intensity exercise potentiates the anorexic effect of peripheral glucose administration. This work raises new feeding-related targets that would explain how exercise drives body weight loss. ABSTRACT: Obesity has emerged as a critical metabolic disorder in modern society. An adequate lifestyle with a well-oriented programme of diet and physical exercise (PE) can prevent or potentially even cure obesity. Additionally, PE might lead to weight loss by increasing energy expenditure and decreasing hunger perception. In this article, we hypothesize that an acute exercise session would potentiate the glucose inhibitory effects on food intake in male Wistar rats. Our data show that moderate- or high-intensity PE significantly decreased food intake, although no changes in the expression of feeding-related neuropeptide in the arcuate nucleus of the hypothalamus were found. Exercised animals demonstrated a reduced glucose tolerance and increased blood insulin concentration. Intraperitoneal administration of glucose decreased food intake in control animals. In the animals submitted to moderate-intensity PE, the decrease in food intake promoted by glucose was similar to controls; however, an interaction was observed when glucose was injected in the high-intensity PE group, in which food intake was significantly lower than the effect produced by glucose alone. A different pattern of expression was observed for the monocarboxylate transporter isoforms (MCT1, 2 and 4) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFBP3) in the hypothalamus, which was dependent on the exercise intensity. In conclusion, PE decreases food intake independently of the intensity. However, an interaction between PE and the anorexic effect of glucose is only observed when a high-intensity exercise is performed. These data show an essential role of exercise intensity in the modulation of the glucose inhibitory effect on food intake.


Assuntos
Ingestão de Alimentos/fisiologia , Glucose/farmacologia , Condicionamento Físico Animal/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fosfofrutoquinase-2/metabolismo , Ratos , Ratos Wistar
12.
Br J Nutr ; 118(1): 41-52, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28797310

RESUMO

The quality of dietary lipids in the maternal diet can programme the offspring to diseases in later life. We investigated whether the maternal intake of palm oil or interesterified fat, substitutes for trans-unsaturated fatty acids (FA), induces metabolic changes in the adult offspring. During pregnancy and lactation, C57BL/6 female mice received normolipidic diets containing partially hydrogenated vegetable fat rich in trans-unsaturated fatty acids (TG), palm oil (PG), interesterified fat (IG) or soyabean oil (CG). After weaning, male offspring from all groups received the control diet until day 110. Plasma glucose and TAG and liver FA profiles were ascertained. Liver mitochondrial function was accessed with high-resolution respirometry by measuring VO2, fluorimetry for detection of hydrogen peroxide (H2O2) production and mitochondrial Ca2+ uptake. The results showed that the IG offspring presented a 20 % increase in plasma glucose and both the IG and TG offspring presented a 2- and 1·9-fold increase in TAG, respectively, when compared with CG offspring. Liver MUFA and PUFA contents decreased in the TG and IG offspring when compared with CG offspring. Liver MUFA content also decreased in the PG offspring. These modifications in FA composition possibly affected liver mitochondrial function, as respiration was impaired in the TG offspring and H2O2 production was higher in the IG offspring. In addition, mitochondrial Ca2+ retention capacity was reduced by approximately 40 and 55 % in the TG and IG offspring, respectively. In conclusion, maternal consumption of trans-unsaturated and interesterified fat affected offspring health by compromising mitochondrial bioenergetics and lipid metabolism in the liver.


Assuntos
Metabolismo Energético , Ácidos Graxos/efeitos adversos , Lactação , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias/metabolismo , Ácidos Graxos trans/efeitos adversos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Glicemia/metabolismo , Cálcio/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Óleos de Plantas , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Respiração , Ácidos Graxos trans/metabolismo , Triglicerídeos/sangue
13.
Biochem J ; 473(6): 703-15, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26699902

RESUMO

Tumours display different cell populations with distinct metabolic phenotypes. Thus, subpopulations can adjust to different environments, particularly with regard to oxygen and nutrient availability. Our results indicate that progression to metastasis requires mitochondrial function. Our research, centered on cell lines that display increasing degrees of malignancy, focused on metabolic events, especially those involving mitochondria, which could reveal which stages are mechanistically associated with metastasis. Melanocytes were subjected to several cycles of adhesion impairment, producing stable cell lines exhibiting phenotypes representing a progression from non-tumorigenic to metastatic cells. Metastatic cells (4C11+) released the highest amounts of lactate, part of which was derived from glutamine catabolism. The 4C11+ cells also displayed an increased oxidative metabolism, accompanied by enhanced rates of oxygen consumption coupled to ATP synthesis. Enhanced mitochondrial function could not be explained by an increase in mitochondrial content or mitochondrial biogenesis. Furthermore, 4C11+ cells had a higher ATP content, and increased succinate oxidation (complex II activity) and fatty acid oxidation. In addition, 4C11+ cells exhibited a 2-fold increase in mitochondrial membrane potential (ΔΨmit). Consistently, functional assays showed that the migration of cells depended on glutaminase activity. Metabolomic analysis revealed that 4C11+ cells could be grouped as a subpopulation with a profile that was quite distinct from the other cells investigated in the present study. The results presented here have centred on how the multiple metabolic inputs of tumour cells may converge to compose the so-called metastatic phenotype.


Assuntos
Glutamina/metabolismo , Melanócitos/fisiologia , Melanoma/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Glucose/metabolismo , Glutaminase/metabolismo , Glutamina/genética , Lactatos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Potenciais da Membrana/fisiologia , Metabolismo , Camundongos , Oxirredução , Fenótipo
14.
New Phytol ; 208(3): 776-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26082998

RESUMO

Reactive oxygen species (ROS) are signaling molecules that regulate plant development and responses to stresses. Mitochondria are the source of most ROS in heterotrophic cells, and mitochondrial complex I and complex III are regarded as the main sites of ROS production in plant mitochondria. Recent studies have demonstrated that succinate dehydrogenase (SDH) also contributes to mitochondrial ROS production. However, the ability of SDH to generate ROS in plants is unclear. The aim of this study was to evaluate the role of SDH in mitochondrial ROS production. Our results demonstrated that SDH is a direct source of ROS in Arabidopsis thaliana and Oryza sativa, and the induction of ROS production by specific SDH inhibitors impaired plant growth. In addition, this effect was accompanied by the down-regulation of cell cycle genes and the up-regulation of stress-related genes. However, the partial inhibition of SDH by a competitive inhibitor decreased ROS production, which was associated with increased shoot and root growth, and prevented the down-regulation of cell cycle genes and the induction of stress-related genes by noncompetitive inhibitors. In conclusion, SDH plays an important role in ROS production, being a direct source of ROS in plant mitochondria and regulating plant development and stress responses.


Assuntos
Arabidopsis/enzimologia , Mitocôndrias/metabolismo , Desenvolvimento Vegetal , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Ciclo Celular , Estresse Fisiológico
15.
Parasitol Res ; 114(2): 419-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25349143

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a single mitochondrion with an enlarged portion termed kinetoplast. This unique structure harbors the mitochondrial DNA (kDNA), composed of interlocked molecules: minicircles and maxicircles. kDNA is a hallmark of kinetoplastids and for this reason constitutes a valuable target in chemotherapeutic and cell biology studies. In the present work, we analyzed the effects of berenil, a minor-groove-binding agent that acts preferentially at the kDNA, thereby affecting cell proliferation, ultrastructure, and mitochondrial activity of T. cruzi epimastigote form. Our results showed that berenil promoted a reduction on parasite growth when high concentrations were used; however, cell viability was not affected. This compound caused significant changes in kDNA arrangement, including the appearance of membrane profiles in the network and electron-lucent areas in the kinetoplast matrix, but nuclear ultrastructure was not modified. The use of the TdT technique, which specifically labels DNA, conjugated to atomic force microscopy analysis indicates that berenil prevents the minicircle decatenation of the network, thus impairing DNA replication and culminating in the appearance of dyskinetoplastic cells. Alterations in the kinetoplast network may be associated with kDNA lesions, as suggested by the quantitative PCR (qPCR) technique. Furthermore, parasites treated with berenil presented higher levels of reactive oxygen species and a slight decrease in the mitochondrial membrane potential and oxygen consumption. Taken together, our results reveal that this DNA-binding drug mainly affects kDNA topology and replication, reinforcing the idea that the kinetoplast represents a potential target for chemotherapy against trypanosomatids.


Assuntos
Doença de Chagas/tratamento farmacológico , Replicação do DNA/efeitos dos fármacos , Diminazena/análogos & derivados , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/parasitologia , Diminazena/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/ultraestrutura
16.
Am J Physiol Endocrinol Metab ; 307(11): E1020-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25294216

RESUMO

During cold acclimation, shivering is progressively replaced by nonshivering thermogenesis. Brown adipose tissue (BAT) and skeletal muscle are relevant for nonshivering thermogenesis, which depends largely on thyroid hormone. Since the skeletal muscle fibers progressively adapt to cold exposure through poorly defined mechanisms, our intent was to determine whether skeletal muscle type 2 deiodinase (D2) induction could be implicated in the long-term skeletal muscle cold acclimation. We demonstrate that in the red oxidative soleus muscle, D2 activity increased 2.3-fold after 3 days at 4°C together with the brown adipose tissue D2 activity, which increased 10-fold. Soleus muscle and BAT D2 activities returned to the control levels after 10 days of cold exposure, when an increase of 2.8-fold in D2 activity was detected in white glycolytic gastrocnemius but not in red oxidative gastrocnemius fibers. Propranolol did not prevent muscle D2 induction, but it impaired the decrease of D2 in BAT and soleus after 10 days at 4°C. Cold exposure is accompanied by increased oxygen consumption, UCP3, and PGC-1α genes expression in skeletal muscles, which were partialy prevented by propranolol in soleus and gastrocnemius. Serum total and free T3 is increased during cold exposure in rats, even after 10 days, when BAT D2 is already normalized, suggesting that skeletal muscle D2 activity contributes significantly to circulating T3 under this adaptive condition. In conclusion, cold exposure is accompanied by concerted changes in the metabolism of BAT and oxidative and glycolytic skeletal muscles that are paralleled by type 2 deiodinase activation.


Assuntos
Temperatura Baixa , Iodeto Peroxidase/biossíntese , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Temperatura Corporal/fisiologia , Citrato (si)-Sintase/metabolismo , Masculino , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Regulação para Cima/fisiologia , Iodotironina Desiodinase Tipo II
17.
Biochem J ; 449(1): 263-73, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23039043

RESUMO

NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe-S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria.


Assuntos
Mitocôndrias/fisiologia , Óxido Nítrico/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Solanum tuberosum/fisiologia , Partículas Submitocôndricas/fisiologia , Succinato Desidrogenase/antagonistas & inibidores , Animais , Química Encefálica/fisiologia , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/fisiologia , Óxido Nítrico/química , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Solanum tuberosum/enzimologia , Partículas Submitocôndricas/enzimologia , Succinato Desidrogenase/fisiologia
18.
mSphere ; : e0040624, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980068

RESUMO

Dengue virus (DENV) infection is known to affect host cell metabolism, but the molecular players involved are still poorly known. Using a proteomics approach, we identified six DENV proteins associated with mitochondria isolated from infected hepatocytes, and most of the peptides identified were from NS3. We also found an at least twofold decrease of several electron transport system (ETS) host proteins. Thus, we investigated whether NS3 could modulate the ETS function by incubating recombinant DENV NS3 constructs in mitochondria isolated from mouse liver. We found that NS3pro (NS3 protease domain), but not the correspondent catalytically inactive mutant (NS3proS135A), impairs complex I (CI)-dependent NADH:ubiquinone oxidoreductase activity, but not the activities of complexes II, III, IV, or V. Accordingly, using high-resolution respirometry, we found that both NS3pro and full-length NS3 decrease the respiratory rates associated with malate/pyruvate oxidation in mitochondria. The NS3-induced impairment in mitochondrial respiration occurs without altering either leak respiration or mitochondria's capacity to maintain membrane potential, suggesting that NS3 does not deeply affect mitochondrial integrity. Remarkably, CI activity is also inhibited in DENV-infected cells, supporting that the NS3 effects observed in isolated mitochondria may be relevant in the context of the infection. Finally, in silico analyses revealed the presence of potential NS3 cleavage sites in 17 subunits of mouse CI and 16 subunits of human CI, most of them located on the CI surface, suggesting that CI is prone to undergo proteolysis by NS3. Our findings suggest that DENV NS3 can modulate mitochondrial bioenergetics by directly affecting CI function. IMPORTANCE: Dengue virus (DENV) infection is a major public health problem worldwide, affecting about 400 million people yearly. Despite its importance, many molecular aspects of dengue pathogenesis remain poorly known. For several years, our group has been investigating DENV-induced metabolic alterations in the host cells, focusing on the bioenergetics of mitochondrial respiration. The results of the present study reveal that the DENV non-structural protein 3 (NS3) is found in the mitochondria of infected cells, impairing mitochondrial respiration by directly targeting one of the components of the electron transport system, the respiratory complex I (CI). NS3 acts as the viral protease during the DENV replication cycle, and its proteolytic activity seems necessary for inhibiting CI function. Our findings uncover new nuances of DENV-induced metabolic alterations, highlighting NS3 as an important player in the modulation of mitochondria function during infection.

19.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167340, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986816

RESUMO

Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.

20.
Arch Biochem Biophys ; 534(1-2): 3-10, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23111185

RESUMO

Reactive oxygen species (ROS) and oxygen (O2) have been implicated in neurogenesis and self-renewal of neural progenitor cells (NPCs). On the other hand, oxidative unbalance, either by an impairment of antioxidant defenses or by an intensified production of ROS, is increasingly related to risk factors of neurodevelopmental disorders, such as schizophrenia. In this scenario, human induced pluripotent stem cells (hiPSCs) emerged as an interesting platform for the study of cellular and molecular aspects of this mental disorder, by complementing other experimental models, with exclusive advantages such as the recapitulation of brain development. Herein we discuss the role of O2/ROS signaling for neuronal differentiation and how its unbalance could be related to neurodevelopmental disorders, such as schizophrenia. Identifying the role of O2/ROS in neurogenesis as well as tackling oxidative stress and its disturbances in schizophrenic patients' derived cells will provide an interesting opportunity for the study of neural stem cells differentiation and neurodevelopmental disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Oxigênio/metabolismo , Esquizofrenia/metabolismo , Epigênese Genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA