Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(5)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738516

RESUMO

Cytotoxic necrotizing factor 1 (CNF1) is a bacterial protein toxin primarily expressed by pathogenic Escherichia coli strains, causing extraintestinal infections. The toxin is believed to enhance the invasiveness of E. coli by modulating the activity of Rho GTPases in host cells, but it has interestingly also been shown to promote inflammation, stimulate host immunity and function as a potent immunoadjuvant. The mechanisms underlying the immunostimulatory properties of CNF1 are, however, poorly characterized, and little is known about the direct effects of the toxin on immune cells. Here, we show that CNF1 induces expression of maturation markers on human immature monocyte-derived dendritic cells (moDCs) without compromising cell viability. Consistent with the phenotypic maturation, CNF1 further triggered secretion of proinflammatory cytokines and increased the capacity of moDCs to stimulate proliferation of allogenic naïve CD4+ T cells. A catalytically inactive form of the toxin did not induce moDC maturation, indicating that the enzymatic activity of CNF1 triggers immature moDCs to undergo phenotypic and functional maturation. As the maturation of dendritic cells plays a central role in initiating inflammation and activating the adaptive immune response, the present findings shed new light on the immunostimulatory properties of CNF1 and may explain why the toxin functions as an immunoadjuvant.


Assuntos
Adjuvantes Imunológicos/farmacologia , Toxinas Bacterianas/química , Células Dendríticas/efeitos dos fármacos , Proteínas de Escherichia coli/química , Inflamação/tratamento farmacológico , Adjuvantes Imunológicos/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Escherichia coli/química , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Proteínas rho de Ligação ao GTP/genética
2.
Sci Adv ; 10(21): eadj1564, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781347

RESUMO

Resistance to therapy commonly develops in patients with high-grade serous ovarian carcinoma (HGSC) and triple-negative breast cancer (TNBC), urging the search for improved therapeutic combinations and their predictive biomarkers. Starting from a CRISPR knockout screen, we identified that loss of RB1 in TNBC or HGSC cells generates a synthetic lethal dependency on casein kinase 2 (CK2) for surviving the treatment with replication-perturbing therapeutics such as carboplatin, gemcitabine, or PARP inhibitors. CK2 inhibition in RB1-deficient cells resulted in the degradation of another RB family cell cycle regulator, p130, which led to S phase accumulation, micronuclei formation, and accelerated PARP inhibition-induced aneuploidy and mitotic cell death. CK2 inhibition was also effective in primary patient-derived cells. It selectively prevented the regrowth of RB1-deficient patient HGSC organoids after treatment with carboplatin or niraparib. As about 25% of HGSCs and 40% of TNBCs have lost RB1 expression, CK2 inhibition is a promising approach to overcome resistance to standard therapeutics in large strata of patients.


Assuntos
Caseína Quinase II , Proteínas de Ligação a Retinoblastoma , Humanos , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Feminino , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Carboplatina/farmacologia , Mutações Sintéticas Letais , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/farmacologia
3.
Dev Cell ; 58(12): 1106-1121.e7, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37148882

RESUMO

The broad research use of organoids from high-grade serous ovarian cancer (HGSC) has been hampered by low culture success rates and limited availability of fresh tumor material. Here, we describe a method for generation and long-term expansion of HGSC organoids with efficacy markedly improved over previous reports (53% vs. 23%-38%). We established organoids from cryopreserved material, demonstrating the feasibility of using viably biobanked tissue for HGSC organoid derivation. Genomic, histologic, and single-cell transcriptomic analyses revealed that organoids recapitulated genetic and phenotypic features of original tumors. Organoid drug responses correlated with clinical treatment outcomes, although in a culture conditions-dependent manner and only in organoids maintained in human plasma-like medium (HPLM). Organoids from consenting patients are available to the research community through a public biobank and organoid genomic data are explorable through an interactive online tool. Taken together, this resource facilitates the application of HGSC organoids in basic and translational ovarian cancer research.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Organoides/patologia , Genômica
4.
Cell Rep ; 35(10): 109220, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107253

RESUMO

Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells-the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence.


Assuntos
Senescência Celular/genética , Dano ao DNA/genética , Mutagênicos/metabolismo , Linfócitos T/metabolismo , Humanos
5.
J Colloid Interface Sci ; 511: 251-258, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028576

RESUMO

Materials science offers new perspectives in the clinical analysis of antimicrobial sensitivity. However, a biomaterial with the capacity to respond to living bacteria has not been developed to date. We present an electrochromic iron(III)-complexed alginate hydrogel sensitive to bacterial metabolism, here applied to fast antibiotic-susceptibility determination. Bacteria under evaluation are entrapped -and pre-concentrated- in the hydrogel matrix by oxidation of iron (II) ions to iron (III) and in situ formation of the alginate hydrogel in less than 2min and in soft experimental conditions (i.e. room temperature, pH 7, aqueous solution). After incubation with the antibiotic (10min), ferricyanide is added to the biomaterial. Bacteria resistant to the antibiotic dose remain alive and reduce ferricyanide to ferrocyanide, which reacts with the iron (III) ions in the hydrogel to produce Prussian Blue molecules. For a bacterial concentration above 107 colony forming units per mL colour development is detectable with the bare eye in less than 20min. The simplicity, sensitivity, low-cost and short response time of the biomaterial and the assay envisages a high impact of these approaches on sensitive sectors such as public health system, food and beverage industries or environmental monitoring.


Assuntos
Alginatos/química , Antibacterianos , Escherichia coli/crescimento & desenvolvimento , Compostos Férricos , Hidrogéis , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacologia , Compostos Férricos/síntese química , Compostos Férricos/química , Compostos Férricos/farmacologia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacologia , Testes de Sensibilidade Microbiana/métodos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA