Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nucleic Acids Res ; 50(14): 7938-7958, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871293

RESUMO

Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.


Assuntos
Histona Desacetilase 1 , Leucemia Eritroblástica Aguda , Complexo Repressor Polycomb 2 , Proteínas Proto-Oncogênicas , Transativadores , Acetilação , Animais , Cromatina/genética , Histona Desacetilase 1/genética , Leucemia Eritroblástica Aguda/genética , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Transativadores/genética
2.
Blood ; 119(18): 4228-41, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22438255

RESUMO

Oncogenic mutations leading to persistent kinase activities are associated with malignancies. Therefore, deciphering the signaling networks downstream of these oncogenic stimuli remains a challenge to gather insights into targeted therapy. To elucidate the biochemical networks connecting the Kit mutant to leukemogenesis, in the present study, we performed a global profiling of tyrosine-phosphorylated proteins from mutant Kit-driven murine leukemia proerythroblasts and identified Shp2 and Stat5 as proximal effectors of Kit. Shp2 or Stat5 gene depletion by sh-RNA, combined with pharmacologic inhibition of PI3kinase or Mek/Erk activities, revealed 2 distinct and independent signaling pathways contributing to malignancy. We demonstrate that cell survival is driven by the Kit/Shp2/Ras/Mek/Erk1/2 pathway, whereas the G(1)/S transition during the cell cycle is accelerated by both the Kit/Stat5 and Kit/PI3K/Akt pathways. The combined use of the clinically relevant drugs NVP-BEZ235, which targets the cell cycle, and Obatoclax, which targets survival, demonstrated synergistic effects to inhibit leukemia cell growth. This synergy was confirmed with a human mast leukemia cell line (HMC-1.2) that expresses mutant Kit. The results of the present study using liquid chromatography/tandem mass spectrometry analysis have elucidated signaling networks downstream of an oncogenic kinase, providing a molecular rationale for pathway-targeted therapy to treat cancer cells refractory to tyrosine kinase inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Adenilato Quinase/antagonistas & inibidores , Adenilato Quinase/fisiologia , Animais , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Imidazóis/farmacologia , Indóis , Leucemia de Mastócitos/patologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Fosfotirosina/análise , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/fisiologia , Pirróis/farmacologia , Quinolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Fator de Transcrição STAT5/antagonistas & inibidores , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/fisiologia , Ensaio Tumoral de Célula-Tronco
3.
Nucleic Acids Res ; 40(18): 8927-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22790984

RESUMO

Acute leukemias are characterized by deregulation of transcriptional networks that control the lineage specificity of gene expression. The aberrant overexpression of the Spi-1/PU.1 transcription factor leads to erythroleukemia. To determine how Spi-1 mechanistically influences the transcriptional program, we combined a ChIP-seq analysis with transcriptional profiling in cells from an erythroleukemic mouse model. We show that Spi-1 displays a selective DNA-binding that does not often cause transcriptional modulation. We report that Spi-1 controls transcriptional activation and repression partially through distinct Spi-1 recruitment to chromatin. We revealed several parameters impacting on Spi-1-mediated transcriptional activation. Gene activation is facilitated by Spi-1 occupancy close to transcriptional starting site of genes devoid of CGIs. Moreover, in those regions Spi-1 acts by binding to multiple motifs tightly clustered and with similar orientation. Finally, in contrast to the myeloid and lymphoid B cells in which Spi-1 exerts a physiological activity, in the erythroleukemic cells, lineage-specific cooperating factors do not play a prevalent role in Spi-1-mediated transcriptional activation. Thus, our work describes a new mechanism of gene activation through clustered site occupancy of Spi-1 particularly relevant in regard to the strong expression of Spi-1 in the erythroleukemic cells.


Assuntos
Leucemia Eritroblástica Aguda/genética , Proteínas Proto-Oncogênicas/metabolismo , Elementos Reguladores de Transcrição , Transativadores/metabolismo , Ativação Transcricional , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Ilhas de CpG , DNA/química , DNA/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma , Leucemia Eritroblástica Aguda/metabolismo , Camundongos , Camundongos Transgênicos , Motivos de Nucleotídeos , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição
4.
J Fungi (Basel) ; 9(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36836250

RESUMO

Scedosporium apiospermum is a saprophytic filamentous fungus involved in human infections, of which the virulence factors that contribute to pathogenesis are still poorly characterized. In particular, little is known about the specific role of dihydroxynaphtalene (DHN)-melanin, located on the external layer of the conidia cell wall. We previously identified a transcription factor, PIG1, which may be involved in DHN-melanin biosynthesis. To elucidate the role of PIG1 and DHN-melanin in S. apiospermum, a CRISPR-Cas9-mediated PIG1 deletion was carried out from two parental strains to evaluate its impact on melanin biosynthesis, conidia cell-wall assembly, and resistance to stress, including the ability to survive macrophage engulfment. ΔPIG1 mutants did not produce melanin and showed a disorganized and thinner cell wall, resulting in a lower survival rate when exposed to oxidizing conditions, or high temperature. The absence of melanin increased the exposure of antigenic patterns on the conidia surface. PIG1 regulates the melanization of S. apiospermum conidia, and is involved in the survival to environmental injuries and to the host immune response, that might participate in virulence. Moreover, a transcriptomic analysis was performed to explain the observed aberrant septate conidia morphology and found differentially expressed genes, underlining the pleiotropic function of PIG1.

5.
Front Mol Biosci ; 8: 645134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937329

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a well-known apoptosis inducer and a potential anticancer agent. When caspases and inhibitors of apoptosis proteins (IAPs) are inhibited, TRAIL induces necroptosis. Molecular mechanisms of necroptosis rely on kinase activation, and on the formation of a necrosome complex, bringing together the receptor-interacting protein kinases 1 and 3 (RIPK1, RIPK3), and the mixed lineage kinase domain-like protein (MLKL). In this study, mass spectrometry approach allowed to identify the tripartite motif containing 21 (TRIM21), an E3 ubiquitin-protein ligase as a new partner of the endogenous TRAIL-induced necrosome. Alteration of TRIM21 expression level, obtained by transient transfection of HT29 or HaCat cells with TRIM21-targeted siRNAs or cDNA plasmids coding for TRIM21 demonstrated that TRIM21 is a positive regulator of TRAIL-induced necroptosis. Furthermore, the invalidation of TRIM21 expression in HT29 cells by CRISPR-Cas9 technology also decreased cell sensitivity to TRAIL-induced necroptosis, a shortcoming associated with a reduction in MLKL phosphorylation, the necroptosis executioner. Thus, TRIM21 emerged as a new partner of the TRAIL-induced necrosome that positively regulates the necroptosis process.

6.
Food Chem Toxicol ; 146: 111798, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33022287

RESUMO

Liver steatosis has been associated with various etiological factors (obesity, alcohol, environmental contaminants). How those factors work together to induce steatosis progression is still scarcely evaluated. Here, we tested whether phthalates could potentiate death of steatotic hepatocytes when combined with ethanol. Pre-steatotic WIF-B9 hepatocytes were co-exposed to mono (2-ethylhexyl) (MEHP, 500 nM; main metabolite of di (2-ethylhexyl) phthalate or DEHP) and ethanol (5 mM) for 5 days. An increased apoptotic death was detected, involving a DNA damage response. Using 4-Methypyrazole to inhibit ethanol metabolism, and CH-223191 to antagonize the AhR receptor, we found that an AhR-dependent increase in alcohol dehydrogenase (ADH) activity was essential for cell death upon MEHP/ethanol co-exposure. Toxicity was also prevented by HET0016 to inhibit the cytochrome P450 4A (CYP4A). Using the antioxidant thiourea, a role for oxidative stress was uncovered, notably triggering DNA damage. Finally, co-exposing the in vivo steatosis model of high fat diet (HFD)-zebrafish larvae to DEHP (2.56 nM)/ethanol (43 mM), induced the pathological progression of liver steatosis alongside an increased Cyp4t8 (human CYP4A homolog) mRNA expression. Altogether, these results further emphasized the deleterious impact of co-exposures to ethanol/environmental pollutant towards steatosis pathological progression, and unraveled a key role for ADH and CYP4A in such effects.


Assuntos
Álcool Desidrogenase/metabolismo , Morte Celular/efeitos dos fármacos , Citocromo P-450 CYP4A/metabolismo , Dietilexilftalato/análogos & derivados , Etanol/toxicidade , Fígado Gorduroso/patologia , Hepatócitos/efeitos dos fármacos , Animais , Dietilexilftalato/toxicidade , Humanos
7.
Free Radic Biol Med ; 160: 246-262, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32791186

RESUMO

A growing body of evidences indicate the major role of extracellular vesicles (EVs) as players of cell communication in the pathogenesis of liver diseases. EVs are membrane-enclosed vesicles released by cells into the extracellular environment. Oxidative stress is also a key component of liver disease pathogenesis, but no role for hepatocyte-derived EVs has yet been described in the development of this process. Recently, some polycyclic aromatic hydrocarbons (PAHs), widespread environmental contaminants, were demonstrated to induce EV release from hepatocytes. They are also well-known to trigger oxidative stress leading to cell death. Therefore, the aim of this work was to investigate the involvement of EVs derived from PAHs-treated hepatocytes (PAH-EVs) in possible oxidative damages of healthy recipient hepatocytes, using both WIF-B9 and primary rat hepatocytes. We first showed that the release of EVs from PAHs -treated hepatocytes depended on oxidative stress. PAH-EVs were enriched in proteins related to oxidative stress such as NADPH oxidase and ferritin. They were also demonstrated to contain more iron. PAH-EVs could then induce oxidative stress in recipient hepatocytes, thereby leading to apoptosis. Mitochondria and lysosomes of recipient hepatocytes exhibited significant structural alterations. All those damages were dependent on internalization of EVs that reached lysosomes with their cargoes. Lysosomes thus appeared as critical organelles for EVs to induce apoptosis. In addition, pro-oxidant components of PAH-EVs, e.g. NADPH oxidase and iron, were revealed to be necessary for this cell death.


Assuntos
Vesículas Extracelulares , Hidrocarbonetos Policíclicos Aromáticos , Animais , Vesículas Extracelulares/metabolismo , Hepatócitos , Ferro/metabolismo , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ratos
8.
Toxicol Sci ; 171(2): 443-462, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368503

RESUMO

Extracellular vesicles (EVs) are membrane-enclosed nanostructures released by cells into the extracellular environment. As major actors of physiological intercellular communication, they have been shown to be pathogenic mediators of several liver diseases. Extracellular vesicles also appear to be potential actors of drug-induced liver injury but nothing is known concerning environmental pollutants. We aimed to study the impact of polycyclic aromatic hydrocarbons (PAHs), major contaminants, on hepatocyte-derived EV production, with a special focus on hepatocyte death. Three PAHs were selected, based on their presence in food and their affinity for the aryl hydrocarbon receptor (AhR): benzo[a]pyrene (BP), dibenzo[a,h]anthracene (DBA), and pyrene (PYR). Treatment of primary rat and WIF-B9 hepatocytes by all 3 PAHs increased the release of EVs, mainly comprised of exosomes, in parallel with modifying exosome protein marker expression and inducing apoptosis. Moreover, PAH treatment of rodents for 3 months also led to increased EV levels in plasma. The EV release involved CYP metabolism and the activation of the transcription factor, the AhR, for BP and DBA and another transcription factor, the constitutive androstane receptor, for PYR. Furthermore, all PAHs increased cholesterol levels in EVs but only BP and DBA were able to reduce the cholesterol content of total cell membranes. All cholesterol changes very likely participated in the increase in EV release and cell death. Finally, we studied changes in cell membrane fluidity caused by BP and DBA due to cholesterol depletion. Our data showed increased cell membrane fluidity, which contributed to hepatocyte EV release and cell death.

9.
Biomolecules ; 8(2)2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29757947

RESUMO

The rise in prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes an important public health concern worldwide. Including obesity, numerous risk factors of NAFLD such as benzo[a]pyrene (B[a]P) and ethanol have been identified as modifying the physicochemical properties of the plasma membrane in vitro thus causing membrane remodeling-changes in membrane fluidity and lipid-raft characteristics. In this study, the possible involvement of membrane remodeling in the in vivo progression of steatosis to a steatohepatitis-like state upon co-exposure to B[a]P and ethanol was tested in obese zebrafish larvae. Larvae bearing steatosis as the result of a high-fat diet were exposed to ethanol and/or B[a]P for seven days at low concentrations coherent with human exposure in order to elicit hepatotoxicity. In this condition, the toxicant co-exposure raised global membrane order with higher lipid-raft clustering in the plasma membrane of liver cells, as evaluated by staining with the fluoroprobe di-4-ANEPPDHQ. Involvement of this membrane's remodeling was finally explored by using the lipid-raft disruptor pravastatin that counteracted the effects of toxicant co-exposure both on membrane remodeling and toxicity. Overall, it can be concluded that B[a]P/ethanol co-exposure can induce in vivo hepatotoxicity via membrane remodeling which could be considered as a good target mechanism for developing combination therapy to deal with steatohepatitis.


Assuntos
Benzo(a)pireno/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/toxicidade , Fígado Gorduroso/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Peixe-Zebra
10.
Biochem Pharmacol ; 158: 1-12, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30248327

RESUMO

In its classical genomic mode of action, the aryl hydrocarbon receptor (AhR) acts as a ligand activated transcription factor regulating expression of target genes such as CYP1A1 and CYP1B1. Some ligands may also trigger more rapid nongenomic responses through AhR, including calcium signaling (Ca2+). In the present study we observed that pyrene induced a relatively rapid increase in intracellular Ca2+-concentrations ([Ca2+]i) in human microvascular endothelial cells (HMEC-1) and human embryonic kidney cells (HEK293) that was attenuated by AhR-inhibitor treatment and/or transient AhR knockdown by RNAi. In silico molecular docking based on homology models, suggested that pyrene is not able to bind to the human AhR in the agonist conformation. Instead, pyrene docked in the antagonist conformation of the AhR PAS-B binding pocket, although the interaction differed from antagonists such as GNF-351 and CH223191. Accordingly, pyrene did not induce CYP1A1 or CYP1B1, but suppressed CYP1-expression by benzo[a]pyrene (B[a]P) in HMEC-1 cells, confirming that pyrene act as an antagonist of AhR-induced gene expression. Use of pharmacological inhibitors and Ca2+-free medium indicated that the pyrene-induced AhR nongenomic [Ca2+]i increase was initiated by Ca2+-release from intracellular stores followed by a later phase of extracellular Ca2+-influx, consistent with store operated calcium entry (SOCE). These effects was accompanied by an AhR-dependent reduction in ordered membrane lipid domains, as determined by di-4-ANEPPDHQ staining. Addition of cholesterol inhibited both the pyrene-induced [Ca2+]i-increase and alterations in membrane lipid order. In conclusion, we propose that pyrene binds to AhR, act as an antagonist of the canonical genomic AhR/Arnt/CYP1-pathway, reduces ordered membrane lipid domains, and activates AhR nongenomic Ca2+-signaling from intracellular stores.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sinalização do Cálcio/fisiologia , Pirenos/metabolismo , Pirenos/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Compostos Azo/química , Compostos Azo/metabolismo , Compostos Azo/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Sítios de Ligação , Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Purinas/química , Purinas/metabolismo , Purinas/farmacologia , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirenos/química , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/química
11.
Free Radic Biol Med ; 129: 323-337, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30268890

RESUMO

We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcinogenic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids, were then exposed to B[a]P/ethanol (10 nM/5 mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative compound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death, further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the context of prior steatosis.


Assuntos
Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/genética , Etanol/toxicidade , Ácidos Graxos/farmacologia , Hepatócitos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Compostos Azo/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzoatos/farmacologia , Linhagem Celular Tumoral , Quimera , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Imidazóis/farmacologia , Metaloporfirinas/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Necrose/induzido quimicamente , Necrose/genética , Necrose/metabolismo , Óxido Nítrico/agonistas , Pirazóis/farmacologia , Ratos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Superóxidos/agonistas , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo
12.
Sci Rep ; 8(1): 5963, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654281

RESUMO

Hepatic steatosis (i.e. lipid accumulation) and steatohepatitis have been related to diverse etiologic factors, including alcohol, obesity, environmental pollutants. However, no study has so far analyzed how these different factors might interplay regarding the progression of liver diseases. The impact of the co-exposure to the environmental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related hepatotoxicant ethanol, was thus tested on in vitro models of steatosis (human HepaRG cell line; hybrid human/rat WIF-B9 cell line), and on an in vivo model (obese zebrafish larvae). Steatosis was induced prior to chronic treatments (14, 5 or 7 days for HepaRG, WIF-B9 or zebrafish, respectively). Toxicity and inflammation were analyzed in all models; the impact of steatosis and ethanol towards B[a]P metabolism was studied in HepaRG cells. Cytotoxicity and expression of inflammation markers upon co-exposure were increased in all steatotic models, compared to non steatotic counterparts. A change of B[a]P metabolism with a decrease in detoxification was detected in HepaRG cells under these conditions. A prior steatosis therefore enhanced the toxicity of B[a]P/ethanol co-exposure in vitro and in vivo; such a co-exposure might favor the appearance of a steatohepatitis-like state, with the development of inflammation. These deleterious effects could be partly explained by B[a]P metabolism alterations.


Assuntos
Benzo(a)pireno/efeitos adversos , Etanol/efeitos adversos , Fígado Gorduroso/patologia , Fígado/patologia , Animais , Biomarcadores/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Poluentes Ambientais/efeitos adversos , Fígado Gorduroso/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Larva/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Ratos , Peixe-Zebra
13.
Sci Rep ; 7(1): 195, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298645

RESUMO

Most tumors undergo metabolic reprogramming towards glycolysis, the so-called Warburg effect, to support growth and survival. Overexpression of IF1, the physiological inhibitor of the F0F1ATPase, has been related to this phenomenon and appears to be a relevant marker in cancer. Environmental contributions to cancer development are now widely accepted but little is known about the underlying intracellular mechanisms. Among the environmental pollutants humans are commonly exposed to, benzo[a]pyrene (B[a]P), the prototype molecule of polycyclic aromatic hydrocarbons (PAHs), is a well-known human carcinogen. Besides apoptotic signals, B[a]P can also induce survival signals in liver cells, both likely involved in cancer promotion. Our previous works showed that B[a]P elicited a Warburg-like effect, thus favoring cell survival. The present study aimed at further elucidating the molecular mechanisms involved in the B[a]P-induced metabolic reprogramming, by testing the possible involvement of IF1. We presently demonstrate, both in vitro and in vivo, that PAHs, especially B[a]P, strongly increase IF1 expression. Such an increase, which might rely on ß2-adrenergic receptor activation, notably participates to the B[a]P-induced glycolytic shift and cell survival in liver cells. By identifying IF1 as a target of PAHs, this study provides new insights about how environmental factors may contribute to related carcinogenesis.


Assuntos
Carcinógenos Ambientais/toxicidade , Carcinoma Hepatocelular/genética , Glicólise , Neoplasias Hepáticas/genética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Proteínas/genética , Animais , Apoptose , Benzo(a)pireno/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Sobrevivência Celular , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Experimentais , Proteínas/metabolismo , Ratos , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima , Proteína Inibidora de ATPase
14.
FEBS J ; 284(18): 3050-3068, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28715128

RESUMO

Necroptosis is a regulated form of cell death involved in several disease models including in particular liver diseases. Receptor-interacting protein kinases, RIPK1 and RIPK3, are the main serine/threonine kinases driving this cell death pathway. We screened a noncommercial, kinase-focused chemical library which allowed us to identify Sibiriline as a new inhibitor of necroptosis induced by tumor necrosis factor (TNF) in Fas-associated protein with death domain (FADD)-deficient Jurkat cells. Moreover, Sib inhibits necroptotic cell death induced by various death ligands in human or mouse cells while not protecting from caspase-dependent apoptosis. By using competition binding assay and recombinant kinase assays, we demonstrated that Sib is a rather specific competitive RIPK1 inhibitor. Molecular docking analysis shows that Sib is trapped closed to human RIPK1 adenosine triphosphate-binding site in a relatively hydrophobic pocket locking RIPK1 in an inactive conformation. In agreement with its RIPK1 inhibitory property, Sib inhibits both TNF-induced RIPK1-dependent necroptosis and RIPK1-dependent apoptosis. Finally, Sib protects mice from concanavalin A-induced hepatitis. These results reveal the small-molecule Sib as a new RIPK1 inhibitor potentially of interest for the treatment of immune-dependent hepatitis.


Assuntos
Alcaloides/farmacologia , Hepatite Animal/prevenção & controle , Fatores Imunológicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Compostos de Espiro/farmacologia , Alcaloides/química , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/genética , Caspase 3/imunologia , Linhagem Celular Transformada , Concanavalina A , Cicloeximida/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células HT29 , Hepatite Animal/induzido quimicamente , Hepatite Animal/genética , Hepatite Animal/imunologia , Humanos , Imidazóis/farmacologia , Fatores Imunológicos/química , Indóis/farmacologia , Células Jurkat , Masculino , Camundongos , Simulação de Acoplamento Molecular , Necrose/induzido quimicamente , Necrose/genética , Necrose/imunologia , Inibidores de Proteínas Quinases/química , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Transdução de Sinais , Compostos de Espiro/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
15.
Sci Rep ; 6: 30776, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488617

RESUMO

Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na(+)/H(+) exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration).


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos Ambientais/toxicidade , Reprogramação Celular/efeitos dos fármacos , Fígado/citologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Ácido Láctico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos
16.
Oncogene ; 23(25): 4389-99, 2004 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15064749

RESUMO

The hematopoietic transcription factor Spi-1/PU.1 is an oncoprotein participating to the malignant transformation of proerythroblasts in the Friend erythroleukemia or in the erythroleukemic process developed in spi-1 transgenic mice. Overexpression of Spi-1 in proerythroblasts blocks their differentiation. We have shown that Spi-1 promotes the use of the proximal 5'-splice site during the E1A pre-mRNA splicing and interferes with the effect of TLS (Translocated in LipoSarcoma) in this splicing assay. TLS was identified from chromosomal translocations in human liposarcoma and acute myeloid leukemia. Here, we determine the function of Spi-1 domains in splicing and in the interference with TLS. In transient transfection assays in erythroid cells, we show that the DNA binding domain cooperates with the transactivation domain or the PEST region of Spi-1 to modify the function of TLS in splicing. Interestingly, the 27 C-terminal amino acids, which determine the DNA binding activity of Spi-1, are necessary for the splicing function of Spi-1 as well as for its ability to interfere with TLS. Finally, we demonstrate that in leukemic proerythroblasts overexpressing Spi-1, TLS has lost its splicing effect. Thus, we hypothesize that oncogenic pathways in proerythroblasts may involve the ability of Spi-1 to alter splicing.


Assuntos
Células Precursoras Eritroides/metabolismo , Leucemia Eritroblástica Aguda/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Sítios de Splice de RNA/genética , Splicing de RNA/fisiologia , Proteína FUS de Ligação a RNA/fisiologia , Transativadores/fisiologia , Proteínas E1A de Adenovirus/genética , Animais , Sítios de Ligação , Transformação Celular Neoplásica , DNA/metabolismo , Genes Reporter , Leucemia Eritroblástica Aguda/genética , Camundongos , Células-Tronco Neoplásicas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína/fisiologia , Proteínas Proto-Oncogênicas/química , Precursores de RNA/metabolismo , Splicing de RNA/genética , RNA Neoplásico/metabolismo , Proteína FUS de Ligação a RNA/antagonistas & inibidores , Proteína FUS de Ligação a RNA/química , Relação Estrutura-Atividade , Transativadores/química , Ativação Transcricional , Transfecção
17.
Toxicol In Vitro ; 29(7): 1597-608, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26086121

RESUMO

Benzo[a]pyrene (B[a]P), the prototype molecule of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, which has led the International Agency for Research on Cancer to recognize it as a human carcinogen. Besides the well-known apoptotic signals triggered by B[a]P, survival signals have also been suggested to occur, both signals likely involved in cancer promotion. Our previous work showed that B[a]P induced an hyperpolarization of mitochondrial membrane potential (ΔΨm) in rat hepatic epithelial F258 cells. Elevated ΔΨm plays a role in tumor development and progression, and nitric oxide (NO) has been suggested to be responsible for increases in ΔΨm. The present study therefore aimed at evaluating the impact of B[a]P on NO level in F258 cells, and at testing the putative role for NO as a survival signal, notably in link with ΔΨm. Our data demonstrated that B[a]P exposure resulted in an NO production which was dependent upon the activation of the inducible NO synthase. This enzyme activation involved AhR and possibly p53 activation. Preventing NO production not only increased B[a]P-induced cell death but also blocked mitochondrial hyperpolarization. This therefore points to a role for NO as a survival signal upon B[a]P exposure, possibly targeting ΔΨm.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Óxido Nítrico/metabolismo , Animais , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Receptores de Hidrocarboneto Arílico/metabolismo , Proteína Supressora de Tumor p53/metabolismo
18.
PLoS One ; 7(11): e49052, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145067

RESUMO

Oncogenic mutations leading to persistent kinase activities are implicated in various human malignancies. Thereby, signaling pathway-targeted therapies are powerful customized treatment to eradicate cancer cells. In murine and human leukemia cells harboring mutations in Kit, we previously showed that distinct and independent pathways controlled resistance to apoptosis or cell cycle. A treatment with PI3Kinase inhibitors to reduce cell proliferation combined with inhibitors of Erk1/2 activity to promote apoptosis had synergistic effects allowing eradication of leukemia cell growth. We reported here that Bim(EL), a pro-apoptotic member of the Bcl2 family proteins, is the target of Erk1/2 signaling and that its down-regulation is responsible for the apoptosis resistance of murine and human leukemic cells. Downstream of Kit mutant, the tyrosine phosphatase Shp2 maintains Bim(EL) expression at a low level, through Erk/2 activation and proteosomal Bim(EL) degradation. This process is controlled by Shp2 independently of other signaling pathways activated downstream of oncogenic Kit, demonstrating that Shp2 is a key regulator of Bim expression in the context of an oncogenic signaling. The increase in Bim(EL) expression is associated to an increased apoptosis. Moreover, the depletion of Bim overcomes apoptosis associated with Erk1/2 inactivation in UO126-treated leukemic cells, thereby establishing the contribution of Bim to drug-induced apoptosis. These data provide a molecular rationale for using BH3 mimetics in combination with PI3K inhibitors to treat leukemia, especially in the case of an oncogenic signaling refractory to Tyrosine Kinase inhibitors.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Regulação para Baixo/genética , Leucemia/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas de Membrana/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular Tumoral , Humanos , Leucemia/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo
19.
PLoS One ; 4(5): e5721, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19492092

RESUMO

Overexpression of the transcription factor Spi-1/PU.1 by transgenesis in mice induces a maturation arrest at the proerythroblastic stage of differentiation. We have previously isolated a panel of spi-1 transgenic erythroleukemic cell lines that proliferated in the presence of either erythropoietin (Epo) or stem cell factor (SCF). Using these cell lines, we observed that EpoR stimulation by Epo down-regulated expression of the SCF receptor Kit and induced expression of the Src kinase Lyn. Furthermore, enforced expression of Lyn in the cell lines increased cell proliferation in response to Epo, but reduced cell growth in response to SCF in accordance with Lyn ability to down-regulate Kit expression. Together, the data suggest that Epo-R/Lyn signaling pathway is essential for extinction of SCF signaling leading the proerythroblast to strict Epo dependency. These results highlight a new role for Lyn as an effector of EpoR in controlling Kit expression. They suggest that Lyn may play a central role in during erythroid differentiation at the switch between proliferation and maturation.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Eritroblastos/efeitos dos fármacos , Eritroblastos/enzimologia , Eritropoetina/farmacologia , Leucemia/enzimologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citocinas/farmacologia , Eritroblastos/citologia , Camundongos , Proteínas Mutantes/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores da Eritropoetina/metabolismo , Fator de Transcrição STAT5/metabolismo , Transativadores/metabolismo
20.
Blood ; 111(6): 3163-72, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18182570

RESUMO

The model of erythroleukemia caused by Spi-1/PU.1 transgenesis in mice is a multistage disease. A preleukemic step is characterized by an acute proliferation of proerythroblasts due to the arrest of differentiation provoked by Spi-1/PU.1. Later on, a blastic crisis occurs associated with somatic oncogenic mutations in the stem cell factor (SCF) receptor kit. To gain insights into the mechanisms of the leukemic progression, we performed proteomic profiling analyses of proerythroblasts isolated at the 2 stages of the disease. Our results indicate that the level of ezrin, a membrane cytoskeletal crosslinker, is increased in the leukemic cells. We show that Kit oncogenic forms are responsible for ezrin phosphorylation and that phosphorylation rather than overexpression is essential in the leukemic proerythroblasts. Using expression of dominant-negative forms of ezrin, we show that phosphorylation of ezrin on residue Y353 participates in apoptosis resistance, whereas phosphorylation on residue Y145 promotes proliferation of the leukemic cells in vitro and in vivo. Another recurrent oncogenic form of tyrosine kinases (Flt3) most frequently involved in human myeloid leukemia was also able to phosphorylate ezrin. These findings point to a new role for ezrin as signaling player in the development of leukemia, being a downstream effector of oncogenic tyrosine kinases in leukemic blasts.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Leucemia Eritroblástica Aguda/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Proteínas do Citoesqueleto/genética , Eritroblastos/citologia , Eritroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Peptídeos/genética , Peptídeos/metabolismo , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA