Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(8): 437, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864382

RESUMO

The neurodegenerative condition FENIB (familiar encephalopathy with neuroserpin inclusion bodies) is caused by heterozygous expression of polymerogenic mutant neuroserpin (NS), with polymer deposition within the endoplasmic reticulum (ER) of neurons. We generated transgenic neural progenitor cells (NPCs) from mouse fetal cerebral cortex stably expressing either the control protein GFP or human wild type, polymerogenic G392E or truncated (delta) NS. This cellular model makes it possible to study the toxicity of polymerogenic NS in the appropriated cell type by in vitro differentiation to neurons. Our previous work showed that expression of G392E NS in differentiated NPCs induced an adaptive response through the upregulation of several genes involved in the defence against oxidative stress, and that pharmacological reduction of the antioxidant defences by drug treatments rendered G392E NS neurons more susceptible to apoptosis than control neurons. In this study, we assessed mitochondrial distribution and found a higher percentage of perinuclear localisation in G392E NS neurons, particularly in those containing polymers, a phenotype that was enhanced by glutathione chelation and rescued by antioxidant molecules. Mitochondrial membrane potential and contact sites between mitochondria and the ER were reduced in neurons expressing the G392E mutation. These alterations were associated with a pattern of ER stress that involved the ER overload response but not the unfolded protein response. Our results suggest that intracellular accumulation of NS polymers affects the interaction between the ER and mitochondria, causing mitochondrial alterations that contribute to the neuronal degeneration seen in FENIB patients.


Assuntos
Antioxidantes , Neurônios , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Estresse do Retículo Endoplasmático , Epilepsias Mioclônicas , Transtornos Heredodegenerativos do Sistema Nervoso , Humanos , Camundongos , NF-kappa B/metabolismo , Neurônios/metabolismo , Neuropeptídeos , Polímeros , Serpinas , Neuroserpina
2.
J Membr Biol ; 183(3): 175-82, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11696859

RESUMO

Membrane associated and secreted proteins are translated as precursors containing a signal peptide that allows protein-insertion into the membrane of the endoplasmic reticulum and is co-translationally removed in the lumen. The ability of the signal peptide to direct a polypeptide into the secretory pathway is exploited in methods developed to select cDNAs encoding such proteins. Different strategies are known in which cDNA libraries can be screened for signal peptides by the ability of the latter to rescue the translocation of signal sequence-less proteins. In one method, a cDNA library is tested for interleukin 2 receptor alpha chain translocation to the membrane in COS cells, in another one for invertase secretion from yeast. In this work, we compared the two systems by testing six mouse signal peptides in COS and yeast cells. All of them were functional in the mammalian system, whereas only three of them in yeast. Two other sequences needed the 5' cDNA sequence flanking the ATG codon to be removed in order to enable protein translocation. Although the structure of signal sequences and the functioning of the secretory machinery are well conserved from prokaryotes to eukaryotes, it seems evident that not all signal peptides can be interchanged between different proteins and organisms. In particular, signal peptides that are functional in the mammalian system do not necessarily lead to protein translocation in yeast.


Assuntos
Glicosídeo Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Receptores de Interleucina-2/metabolismo , Leveduras/metabolismo , Animais , Sequência de Bases , Células COS/citologia , Endotélio Vascular/metabolismo , Células Eucarióticas/metabolismo , Biblioteca Gênica , Mamíferos , Camundongos , Dados de Sequência Molecular , Transporte Proteico/fisiologia , Especificidade da Espécie , Leveduras/citologia , beta-Frutofuranosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA