Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 32(19-20): 1332-1343, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30254107

RESUMO

Plants have evolved complex photoreceptor-controlled mechanisms to sense and respond to seasonal changes in day length. This ability allows plants to optimally time the transition from vegetative growth to flowering. UV-B is an important part intrinsic to sunlight; however, whether and how it affects photoperiodic flowering has remained elusive. Here, we report that, in the presence of UV-B, genetic mutation of REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) renders the facultative long day plant Arabidopsis thaliana a day-neutral plant and that this phenotype is dependent on the UV RESISTANCE LOCUS 8 (UVR8) UV-B photoreceptor. We provide evidence that the floral repression activity of RUP2 involves direct interaction with CONSTANS, repression of this key activator of flowering, and suppression of FLOWERING LOCUS T transcription. RUP2 therefore functions as an essential repressor of UVR8-mediated induction of flowering under noninductive short day conditions and thus provides a crucial mechanism of photoperiodic flowering control.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Flores/crescimento & desenvolvimento , Fotoperíodo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Raios Ultravioleta
2.
Development ; 139(21): 4072-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22992955

RESUMO

The transition from vegetative to reproductive development is a central event in the plant life cycle. To time the induction of flowering correctly, plants integrate environmental and endogenous signals such as photoperiod, temperature and hormonal status. The hormone gibberellic acid (GA) has long been known to regulate flowering. However, the spatial contribution of GA signaling in flowering time control is poorly understood. Here we have analyzed the effect of tissue-specific misexpression of wild-type and GA-insensitive (dellaΔ17) DELLA proteins on the floral transition in Arabidopsis thaliana. We demonstrate that under long days, GA affects the floral transition by promoting the expression of flowering time integrator genes such as FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) in leaves independently of CONSTANS (CO) and GIGANTEA (GI). In addition, GA signaling promotes flowering independently of photoperiod through the regulation of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in both the leaves and at the shoot meristem. Our data suggest that GA regulates flowering by controlling the spatial expression of floral regulatory genes throughout the plant in a day-length-specific manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/metabolismo , Flores/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Giberelinas/metabolismo
3.
Plant Cell ; 24(8): 3320-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22942378

RESUMO

Gibberellin (GA), a diterpene hormone, plays diverse roles in plant growth and development, including seed germination, stem elongation, and flowering time. Although it is known that GA accelerates flowering through degradation of transcription repressors, DELLAs, the underlying mechanism is poorly understood. We show here that DELLA directly binds to microRNA156 (miR156)-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors, which promote flowering by activating miR172 and MADS box genes. The interaction between DELLA and SPL interferes with SPL transcriptional activity and consequently delays floral transition through inactivating miR172 in leaves and MADS box genes at shoot apex under long-day conditions or through repressing MADS box genes at the shoot apex under short-day conditions. Our results elucidate the molecular mechanism by which GA controls flowering and provide the missing link between DELLA and MADS box genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Flores/fisiologia , Giberelinas/farmacologia , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Ativação Transcricional , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/efeitos dos fármacos , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Giberelinas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , MicroRNAs/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Brotos de Planta , Regiões Promotoras Genéticas , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteólise , Proteínas Repressoras/genética , Fatores de Tempo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido
4.
Plant J ; 71(3): 517-26, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22409706

RESUMO

Mapping-by-sequencing, as implemented in SHOREmap ('SHOREmapping'), is greatly accelerating the identification of causal mutations. The original SHOREmap approach based on resequencing of bulked segregants required a highly accurate and complete reference sequence. However, current whole-genome or transcriptome assemblies from next-generation sequencing data of non-model organisms do not produce chromosome-length scaffolds. We have therefore developed a method that exploits synteny with a related genome for genetic mapping. We first demonstrate how mapping-by-sequencing can be performed using a reduced number of markers, and how the associated decrease in the number of markers can be compensated for by enrichment of marker sequences. As proof of concept, we apply this method to Arabidopsis thaliana gene models ordered by synteny with the genome sequence of the distant relative Brassica rapa, whose genome has several large-scale rearrangements relative to A. thaliana. Our approach provides an alternative method for high-resolution genetic mapping in species that lack finished genome reference sequences or for which only RNA-seq assemblies are available. Finally, for improved identification of causal mutations by fine-mapping, we introduce a new likelihood ratio test statistic, transforming local allele frequency estimations into a confidence interval similar to conventional mapping intervals.


Assuntos
Arabidopsis/genética , Brassica rapa/genética , Mapeamento Cromossômico/métodos , Genoma de Planta/genética , Sintenia/genética , Proteínas de Arabidopsis , Análise Mutacional de DNA , DNA de Plantas/química , DNA de Plantas/genética , Flores/genética , Frequência do Gene , Biblioteca Gênica , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Domínio MADS , Mutação , Análise de Sequência de DNA/métodos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA