Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
MAGMA ; 35(5): 805-815, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35107697

RESUMO

OBJECTIVE: Blood oxygenation can be measured using magnetic resonance using the paramagnetic effect of deoxy-haemoglobin, which decreases the [Formula: see text] relaxation time of blood. This [Formula: see text] contrast has been well characterised at the [Formula: see text] fields used in MRI (1.5 T and above). However, few studies have characterised this effect at lower magnetic fields. Here, the feasibility of blood oximetry at low field based on [Formula: see text] changes that are within a physiological relevant range is explored. This study could be used for specifying requirements for construction of a monitoring device based on low field permanent magnet systems. METHODS: A continuous flow circuit was used to control parameters such as oxygen saturation and temperature in a sample of blood. It flowed through a variable field magnet, where CPMG experiments were performed to measure its [Formula: see text]. In addition, the oxygen saturation was monitored by an optical sensor for comparison with the [Formula: see text] changes. RESULTS: These results show that at low [Formula: see text] fields, the change in blood [Formula: see text] due to oxygenation is small, but still detectable. The data measured at low fields are also in agreement with theoretical models for the oxy-deoxy [Formula: see text] effect. CONCLUSION: [Formula: see text] changes in blood due to oxygenation were observed at fields as low as 0.1 T. These results suggest that low field NMR relaxometry devices around 0.3 T could be designed to detect changes in blood oxygenation.


Assuntos
Oximetria , Saturação de Oxigênio , Imageamento por Ressonância Magnética , Oxigênio
2.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771100

RESUMO

Electrolytes based on ionic liquids (IL) are promising candidates to replace traditional liquid electrolytes in electrochemical systems, particularly in combination with carbon-based porous electrodes. Insight into the dynamics of such systems is imperative for tailoring electrochemical performance. In this work, 1-Methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-Hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide were studied in a carbon black (CB) host using spectrally resolved Carr-Purcell-Meiboom-Gill (CPMG) and 13-interval Pulsed Field Gradient Stimulated Echo (PFGSTE) Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR). Data were processed using a sensitivity weighted Laplace inversion algorithm without non-negativity constraint. Previously found relations between the alkyl length and the aggregation behavior of pyrrolidinium-based cations were confirmed and characterized in more detail. For the IL in CB, a different aggregation behavior was found compared to the neat IL, adding the surface of a porous electrode as an additional parameter for the optimization of IL-based electrolytes. Finally, the suitability of MAS was assessed and critically discussed for investigations of this class of samples.

3.
J Comput Assist Tomogr ; 43(3): 434-442, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31082949

RESUMO

OBJECTIVES: Motivated by the similar appearance of malignant breast lesions in high b-value diffusion-weighted imaging (DWI) and positron emission tomography, the purpose of this work was to evaluate the applicability of a threshold isocontouring approach commonly used in positron emission tomography to analyze DWI data acquired from female human breasts with minimal interobserver variability. METHODS: Twenty-three female participants (59.4 ± 10.0 years) with 23 lesions initially classified as suggestive of cancers in x-ray mammography screening were subsequently imaged on a 1.5-T magnetic resonance imaging scanner. Diffusion-weighted imaging was performed prior to biopsy with b values of 0, 100, 750, and 1500 s/mm. Isocontouring with different threshold levels was performed on the highest b-value image to determine the voxels used for subsequent evaluation of diffusion metrics. The coefficient of variation was computed by specifying 4 different regions of interest drawn around the lesion. Additionally, a receiver operating statistical analysis was performed. RESULTS: Using a relative threshold level greater than or equal to 0.85 almost completely suppresses the intra-individual and inter-individual variability. Among 4 studied diffusion metrics, the diffusion coefficients from the intravoxel incoherent motion model returned the highest area under curve value of 0.9. The optimal cut-off diffusivity was found to be 0.85 µm/ms with a sensitivity of 87.5% and specificity of 90.9%. CONCLUSION: Threshold isocontouring on high b-value maps is a viable approach to reliably evaluate DWI data of suspicious focal lesions in magnetic resonance mammography.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Mamografia/métodos , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Modelos Teóricos , Variações Dependentes do Observador , Tomografia por Emissão de Pósitrons , Intensificação de Imagem Radiográfica , Estudos Retrospectivos , Sensibilidade e Especificidade
4.
Magn Reson Chem ; 57(9): 757-765, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30854731

RESUMO

For over 25 years, nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) techniques have been used to study materials under mechanical deformation. Collectively, these methods are referred to as Rheo-NMR. In many cases, it provides spatially and temporally resolved maps of NMR spectra, intrinsic NMR parameters (such as relaxation times), or motion (such as diffusion or flow). Therefore, Rheo-NMR is complementary to conventional rheological measurements. This review will briefly summarize current capabilities and limitations of Rheo-NMR in the context of material science and food science in particular. It will report on recent advances such as the incorporation of torque sensors or the implementation of large amplitude oscillatory shear and point out future opportunities for Rheo-NMR in food science.

5.
Magn Reson Med ; 79(1): 501-510, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28394083

RESUMO

PURPOSE: Reduced bone strength is associated with a loss of bone mass, usually evaluated by dual-energy X-ray absorptiometry, although it is known that the bone microstructure also affects the bone strength. Here, a method is proposed to measure (in laboratory) the bone volume-to-total volume ratio by single-sided NMR scanners, which is related to the microstructure of the trabecular bone. METHODS: Three single-sided scanners were used on animal bone samples. These low-field, mobile, low-cost devices are able to detect the NMR signal, regardless of the sample sizes, without the use of ionizing radiations, with the further advantage of signal localization offered by their intrinsic magnetic field gradients. RESULTS: The performance of the different single-sided scanners have been discussed. The results have been compared with bone volume-to-total volume ratio by micro CT and MRI, obtaining consistent values. CONCLUSIONS: Our results demonstrate the feasibility of the method for laboratory analyses, which are useful for measurements like porosity on bone specimens. This can be considered as the first step to develop an NMR method based on the use of a mobile single-sided device, for the diagnosis of osteoporosis, through the acquisition of the signal from the appendicular skeleton, allowing for low-cost, wide screening campaigns. Magn Reson Med 79:501-510, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Absorciometria de Fóton , Osso Esponjoso/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Tomografia Computadorizada por Raios X , Animais , Densidade Óssea , Doenças Ósseas/diagnóstico por imagem , Calibragem , Imageamento Tridimensional , Microcirculação , Porosidade , Suínos , Microtomografia por Raio-X
6.
Langmuir ; 34(28): 8314-8325, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29924625

RESUMO

The formation of multilamellar vesicles (MLVs) in the lyotropic lamellar phase of the system triethylene glycol mono n-decyl ether (C10E3)/water is investigated under large amplitude oscillatory shear (LAOS) using spatially resolved rheo-NMR spectroscopy and a combination of rheo-small angle light scattering (rheo-SALS) and conventional rheology. Recent advances in rheo-NMR hardware development facilitated the application of LAOS deformations in high-field NMR magnets. For the range of investigated strain amplitudes (10-50) and frequencies (1 and 2 rad s-1), MLV formation is observed in all NMR and most SALS experiments. It is found that the MLV size depends on the applied frequency in contrast to previous steady shear experiments where the shear rate is the controlling parameter. The onset of MLV formation, however, is found to vary with the shear amplitude. The LAOS measurements bear no indication of the intermediate structures resembling aligned multilamellar cylinders observed in steady shear experiments. Lissajous curves of stress vs strain reveal a transition from a viscoelastic solid material to a pseudoplastic material.

7.
Magn Reson Chem ; 55(5): 498-507, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27487091

RESUMO

Complex materials are ubiquitous in science, engineering and nature. One important parameter for characterising their morphology is the degree of anisotropy. Magnetic resonance imaging offers non-invasive methods for quantitative measurements of the materials anisotropy, most commonly via diffusion tensor imaging and the subsequent extraction of the spatially resolved fractional anisotropy (FA) value. Here, we propose an alternative way of determining the FA as a sample average for cases where spatially resolved methods are not needed or not applicable. It is based on a particular diffusion-diffusion correlation spectroscopy protocol, allowing for the extraction of the mean (i.e. sample averaged) FA value. We demonstrate that mean FA values obtained from three anisotropic biological tissues are consistent with those extracted using diffusion tensor imaging. Moreover, we show that differences of mean FA values in healthy and tumour-bearing mouse brains allow to distinguish these tissue types. We anticipate that the proposed method will be beneficial in the wider context of medical and material science. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Animais , Anisotropia , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Simulação por Computador , Daucus carota , Difusão , Imagem de Tensor de Difusão , Humanos , Camundongos
8.
Magn Reson Chem ; 54(12): 975-984, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27420565

RESUMO

Magnetic impurities are ubiquitous in natural porous media such as sand and soil. They generate internal magnetic field gradients because of increased magnetic susceptibility differences between solid and liquid phase in the pore space and because of the presence of magnetic centers. These internal gradients accelerate NMR relaxation rates and thus might limit the possibility of pore space characterization using NMR. In this study, we investigate the effects of coating the surface of natural sands by the antiferromagnetic iron oxyhydroxide goethite on NMR relaxation and diffusion properties. We found a non-quadratic dependence of the relaxation time distributions on the echo time indicating that the relaxation experiments were not performed in the fast diffusion limit, while the weak dependence on the external magnetic field strength is explained by the preponderance of the surface relaxation over the effect of diffusion in internal gradients. The surface to volume ratio of the pore space, determined by NMR diffusimetry ((S/V)NMR ) remains approximately constant, whereas the same quantity, determined from gas adsorption ((S/V)BET ) increases proportional to the coating density. This is because gas adsorption measures surface roughness on sub-nanometer scale, whereas NMR diffusimetry averages over structures smaller than few microns. This has consequences for the calculation of the surface relaxivities. The usage of the (S/V)NMR leads to constant values, whereas the usage of (S/V)BET leads to apparently decreasing relaxivities with increasing coating, which is unrealistic. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Quartzo/química , Dióxido de Silício/química , Algoritmos , Difusão , Campos Eletromagnéticos , Gases , Sedimentos Geológicos , Compostos de Ferro , Minerais , Porosidade
9.
IEEE Trans Biomed Eng ; 70(2): 671-680, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37021844

RESUMO

OBJECTIVE: We have developed a single-sided magnet system that allows Magnetic Resonance relaxation and diffusion parameters to be measured. METHODS: A single-sided magnet system has been developed, using an array of permanent magnets. The magnet positions are optimised to produce a B0 magnetic field with a spot that is relatively homogenous and can project into a sample. NMR relaxometry experiments are used to measure quantitative parameters such as T2, T1 and apparent diffusion coefficient (ADC) on samples on the benchtop. To explore preclinical application, we test whether it can detect changes during acute global cerebral hypoxia in an ovine model. RESULTS: The magnet produces a 0.2 T field projected into the sample. Measurements of benchtop samples show that it can measure T1, T2 and ADC, producing trends and values that are in line with literature measurements. In-vivo studies show a decrease in T2 during cerebral hypoxia that recovers following normoxia. CONCLUSION: The single-sided MR system has the potential to allow non-invasive measurements of the brain. We also demonstrate that it can operate in a pre-clinical environment, allowing T2 to be monitored during brain tissue hypoxia. SIGNIFICANCE: MRI is a powerful technique for non-invasive diagnosis in the brain, but its application has been limited by the requirements for magnetic field strength and homogeneity that imaging methods have. The technology described in this study provides a portable alternative to acquiring clinically significant MR parameters without the need for traditional imaging equipment.


Assuntos
Hipóxia Encefálica , Imãs , Animais , Ovinos , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos
10.
Nature ; 443(7114): 965-8, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17066029

RESUMO

In recent years, considerable progress has been made in the development of novel porous materials with controlled architectures and pore sizes in the mesoporous range. An important feature of these materials is the phenomenon of adsorption hysteresis: for certain ranges of applied pressure, the amount of a molecular species adsorbed by the mesoporous host is higher on desorption than on adsorption, indicating a failure of the system to equilibrate. Although this phenomenon has been known for over a century, the underlying internal dynamics responsible for the hysteresis remain poorly understood. Here we present a combined experimental and theoretical study in which microscopic and macroscopic aspects of the relaxation dynamics associated with hysteresis are quantified by direct measurement and computer simulations of molecular models. Using nuclear magnetic resonance techniques and Vycor porous glass as a model mesoporous system, we have explored the relationship between molecular self-diffusion and global uptake dynamics. For states outside the hysteresis region, the relaxation process is found to be essentially diffusive in character; within the hysteresis region, the dynamics slow down dramatically and, at long times, are dominated by activated rearrangement of the adsorbate density within the host material.

11.
J Magn Reson ; 342: 107264, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35849974

RESUMO

Caking is associated with the consolidation of dry powder and granules, leading to losses of function and/or quality. It has been object of studies in the pharmaceutical, food and fertiliser areas since 1920's because of its significant impact on product quality and value. Caking has been described as a three-step event consisting of sorption-dissolution-recrystallisation phases and constitutes a critical factor in fertilisers losses during storage while also hampering fertiliser application. Current methods for the evaluation of water sorption dynamics are expensive, time-consuming and/or inaccurate. This manuscript describes an unprecedented application of low-field 1H NMR relaxometry for the kinetic study of humidity uptake, in real-time, by urea mixed with different concentrations of an anti-caking agent (zeolite). The proposed method allows to follow the water uptake in different domains of the mixed fertiliser/zeolite samples. To our knowledge, this dynamic has not been observed and quantified so far in real-time. Furthermore, we presented the use of 2D-ILT for kinetic studies, being the first dimension the usual transverse relaxation and the second dimension the kinetic one. With this approach, the NMR relaxation times T2 correlated to time constants associated with the uptake kinetics of the water. This method could be extended to several kinetic studies and experiments with temperature variation. Depending on the kinetics of the studied process, the kernel of the Laplace transform must be suitably adapted.


Assuntos
Zeolitas , Fertilizantes , Umidade , Cinética , Água/química , Zeolitas/química
12.
J Am Chem Soc ; 133(8): 2437-43, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21299204

RESUMO

Pulsed field gradient NMR is applied for monitoring the diffusion properties of guest molecules in hierarchical pore systems after pressure variation in the external atmosphere. Following previous studies with purely mesoporous solids, also in the material containing both micro- and mesopores (activated carbon MA2), the diffusivity of the guest molecules (cyclohexane) is found to be most decisively determined by the sample "history": at a given external pressure, diffusivities are always found to be larger if they are measured after pressure decrease (i.e., on the "desorption" branch) rather than after pressure increase (adsorption branch). Simple model consideration reproduces the order of magnitude of the measured diffusivities as well as the tendencies in their relation to each other and their concentration dependence.

13.
Chemphyschem ; 12(6): 1130-4, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21438112

RESUMO

The remarkable differences in the guest diffusivities in nanoporous materials commonly found with the application of different measuring techniques are usually ascribed to the existence of a hierarchy of transport resistances in addition to the diffusional resistance of the pore system and their differing influence due to the differing diffusion path lengths covered by the different measuring techniques. We report diffusion measurements with nanoporous glasses where the existence of such resistances could be avoided. Molecular propagation over diffusion path lengths from hundreds of nanometers up to millimeters was thus found to be controlled by a uniform mechanism, appearing in coinciding results of microscopic and macroscopic diffusion measurement.

14.
Langmuir ; 27(1): 416-9, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21117674

RESUMO

Pore-space homogeneity of zeolite NaX was probed by pulsed field gradient (PFG) NMR diffusion studies with n-butane as a guest molecule. At a loading of 0.75 molecules per supercage, a wide spectrum of diffusivities was observed. Guest molecules in the (well-shaped) zeolite crystallites were thus found to experience pore spaces of quite different properties. After loading enhancement to 3 molecules per supercage, however, molecular propagation ideally followed the laws of normal diffusion in homogeneous media. At sufficiently high guest concentrations, sample heterogeneity was thus found to be of no perceptible influence on the guest mobilities anymore.

15.
Environ Sci Technol ; 45(12): 5164-9, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21604756

RESUMO

Using a novel NMR option, magic angle spinning pulsed field gradient (MAS PFG) NMR, the mobility of aliphatic domains in humic substances in the presence of toluene (about 4.5 wt. %) has been monitored. Results show a strong correlation between the diffusivities of the mobile aliphatic chains and those of the adsorbed toluene molecules in the matrix as a function of temperature. Particularly, a strong influence of structural relaxation of the humic matrix on the diffusivity of toluene is observed. Our findings confirm that the aliphatic domains in humic substances play an important role in the mobility of sorbed contaminants within this matrix. These findings further confirm the potential of MAS PFG NMR method in monitoring diffusion processes in particulate humic substances.


Assuntos
Poluentes Ambientais/análise , Substâncias Húmicas/análise , Movimento (Física) , Adsorção , Difusão , Espectroscopia de Ressonância Magnética , Temperatura , Tolueno/química
16.
Environ Sci Technol ; 45(20): 8866-72, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21875027

RESUMO

The transport diffusivity of the paramagnetic molecule 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was measured by monitoring its influence on the NMR transverse relaxation time (T2) on surrounding water protons - also known as paramagnetic relaxation enhancement (PRE). Due to the nature of the PRE effect, few paramagnetic molecules are able to simultaneously reduce the T2 of many NMR active nuclei, which represents a significant gain in sensitivity. In an aqueous solution, the minimal detectable TEMPO concentration was around 70 ppm. The value of the diffusivity was estimated by fitting the relaxation data, collected as a function of time, with the appropriate solutions of the second Fick's law in respect to the corresponding sample geometry and dimensions. Considering the experimentally determined TEMPO relaxivity in water ("TEMPO-water relaxivity"; R(TEMPO) = (1.05 ± 0.12) × 10⁻³ ppm⁻¹ s⁻¹), the obtained diffusion coefficients (D) of TEMPO in homogeneous solution and in a water saturated sand column (D(bulk) = (6.7 ± 0.4) × 10⁻¹° m² s⁻¹ and D(sand) = (1.4 ± 0.5) × 10⁻¹° m² s⁻¹, respectively) are in good agreement with the expected values (literature values: D(bulk) = 6.6 × 10⁻¹° m² s⁻¹, 1.3 × 10⁻¹° m² s⁻¹ < D(sand) < 2.3 × 10⁻¹° m² s⁻¹). This new approach enables one to determine the diffusivity of paramagnetic molecules in homogeneous (aqueous solution) and porous media with basic NMR equipment, at low concentrations and in a noninvasive manner.


Assuntos
Óxidos N-Cíclicos/química , Espectroscopia de Ressonância Magnética/métodos , Difusão , Porosidade
17.
J Magn Reson ; 325: 106935, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33639595

RESUMO

The purpose of this study is to develop MRI methods to measure the solid fraction in granular flows quantitatively. It is increasingly recognised that solid fraction plays a key role in granular rheology, but experimental characterisation of it during flow is challenging. Here centric sectoral-SPRITE imaging is applied to image mustard seeds discharging from a 3D-printed hopper. Quantitative images are obtained after considering and correcting artefacts that may arise from flow and relaxation. The image intensity is then further corrected for spatial variations in the B1 field. Various maps of nominally homogeneous samples were tested to correct for variations in the B1 field. The B1 field was found to be sensitive to the geometry of the sample and the material in the sample. Hence, here static images of the seeds in the hopper were used to correct for B1 field variations. Moreover, small signal variations were observed from measurements performed on different days owing to subtle differences in the spectrometer operation. Here an internal standard was used to scale the signal intensity and correct for these variations. Following these corrections, a linear correlation (R2 = 0.999) was observed between the scaled image intensities and the known solid fractions of packed samples with solid fractions between 0.55 and 0.64. This correlation was used as a calibration of the 3D image of the hopper to extract quantitative time-averaged spatial maps of solid fraction during steady flow. The measurements were confirmed to be quantitative by also measuring the velocity of the particles. Together these measurements were used to calculate a mass flow rate in the hopper, which was consistent with the mass flow measured gravimetrically.

18.
Sci Rep ; 11(1): 13712, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211012

RESUMO

We present mathematical simulations of shapes of red blood cells (RBCs) and their cytoskeleton when they are subjected to linear strain. The cell surface is described by a previously reported quartic equation in three dimensional (3D) Cartesian space. Using recently available functions in Mathematica to triangularize the surfaces we computed four types of curvature of the membrane. We also mapped changes in mesh-triangle area and curvatures as the RBCs were distorted. The highly deformable red blood cell (erythrocyte; RBC) responds to mechanically imposed shape changes with enhanced glycolytic flux and cation transport. Such morphological changes are produced experimentally by suspending the cells in a gelatin gel, which is then elongated or compressed in a custom apparatus inside an NMR spectrometer. A key observation is the extent to which the maximum and minimum Principal Curvatures are localized symmetrically in patches at the poles or equators and distributed in rings around the main axis of the strained RBC. Changes on the nanometre to micro-meter scale of curvature, suggest activation of only a subset of the intrinsic mechanosensitive cation channels, Piezo1, during experiments carried out with controlled distortions, which persist for many hours. This finding is relevant to a proposal for non-uniform distribution of Piezo1 molecules around the RBC membrane. However, if the curvature that gates Piezo1 is at a very fine length scale, then membrane tension will determine local curvature; so, curvatures as computed here (in contrast to much finer surface irregularities) may not influence Piezo1 activity. Nevertheless, our analytical methods can be extended address these new mechanistic proposals. The geometrical reorganization of the simulated cytoskeleton informs ideas about the mechanism of concerted metabolic and cation-flux responses of the RBC to mechanically imposed shape changes.


Assuntos
Membrana Eritrocítica , Eritrócitos/citologia , Algoritmos , Fenômenos Biomecânicos , Forma Celular , Simulação por Computador , Deformação Eritrocítica , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Modelos Biológicos , Estresse Mecânico , Propriedades de Superfície
19.
Sci Rep ; 11(1): 3749, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580124

RESUMO

We present the first direct nuclear magnetic resonance (NMR) evidence of enhanced entry of Ca2+ ions into human erythrocytes (red blood cells; RBCs), when these cells are mechanically distorted. For this we loaded the RBCs with the fluorinated Ca2+ chelator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA), and recorded 19F NMR spectra. The RBCs were suspended in gelatin gel in a special stretching/compression apparatus. The 5FBAPTA was loaded into the cells as the tetraacetoxymethyl ester; and 13C NMR spectroscopy with [1,6-13C]D-glucose as substrate showed active glycolysis albeit at a reduced rate in cell suspensions and gels. The enhancement of Ca2+ influx is concluded to be via the mechanosensitive cation channel Piezo1. The increased rate of influx brought about by the activator of Piezo1, 2-[5-[[(2,6-dichlorophenyl)methyl]thio]-1,3,4-thiadiazol-2-yl]-pyrazine (Yoda1) supported this conclusion; while the specificity of the cation-sensing by 5FBAPTA was confirmed by using the Ca2+ ionophore, A23187.


Assuntos
Cálcio/metabolismo , Eritrócitos/metabolismo , Mecanotransdução Celular/fisiologia , Transporte Biológico , Canais de Cálcio/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Eritrócitos/patologia , Feminino , Flúor , Imagem por Ressonância Magnética de Flúor-19/métodos , Glucose , Glicólise , Humanos , Canais Iônicos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Masculino
20.
Chemphyschem ; 10(14): 2429-33, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19708047

RESUMO

By applying pulsed-field gradient nuclear magnetic resonance (PFG NMR) in comparison to quasi-elastic neutron scattering (QENS), we sense by measurement of the diffusion of n-octane on different length scales, transport resistances in faujasite type X (which is isostructural with type Y and differs by the lower Si/Al ratio only) with mutual distances of less than 300 nm. Direct observation of the real structure of zeolite X by transmission electron microscopy identifies them as stacking faults of mirror-twin type on (111)-type planes of the cubic framework. Thus, direct experimental proof is given that, in general, nanoporous host systems such as zeolite crystals cannot be considered as a mere arrangement of cavities. It is rather the presence of structural defects that dominates their properties as soon as transport phenomena with practical relevance, including chemical conversion by heterogeneous catalysis and chemical separation by molecular sieving and selective adsorption, become relevant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA