Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell ; 166(3): 596-608, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27453466

RESUMO

Influenza virus remains a threat because of its ability to evade vaccine-induced immune responses due to antigenic drift. Here, we describe the isolation, evolution, and structure of a broad-spectrum human monoclonal antibody (mAb), MEDI8852, effectively reacting with all influenza A hemagglutinin (HA) subtypes. MEDI8852 uses the heavy-chain VH6-1 gene and has higher potency and breadth when compared to other anti-stem antibodies. MEDI8852 is effective in mice and ferrets with a therapeutic window superior to that of oseltamivir. Crystallographic analysis of Fab alone or in complex with H5 or H7 HA proteins reveals that MEDI8852 binds through a coordinated movement of CDRs to a highly conserved epitope encompassing a hydrophobic groove in the fusion domain and a large portion of the fusion peptide, distinguishing it from other structurally characterized cross-reactive antibodies. The unprecedented breadth and potency of neutralization by MEDI8852 support its development as immunotherapy for influenza virus-infected humans.


Assuntos
Alphainfluenzavirus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/química , Anticorpos Antivirais/isolamento & purificação , Sítios de Ligação de Anticorpos , Cristalografia por Raios X , Epitopos/imunologia , Furões , Humanos , Vacinas contra Influenza , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Conformação Proteica
2.
Nature ; 583(7814): 150-153, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32461688

RESUMO

Infection by enveloped viruses involves fusion of their lipid envelopes with cellular membranes to release the viral genome into cells. For HIV, Ebola, influenza and numerous other viruses, envelope glycoproteins bind the infecting virion to cell-surface receptors and mediate membrane fusion. In the case of influenza, the receptor-binding glycoprotein is the haemagglutinin (HA), and following receptor-mediated uptake of the bound virus by endocytosis1, it is the HA that mediates fusion of the virus envelope with the membrane of the endosome2. Each subunit of the trimeric HA consists of two disulfide-linked polypeptides, HA1 and HA2. The larger, virus-membrane-distal, HA1 mediates receptor binding; the smaller, membrane-proximal, HA2 anchors HA in the envelope and contains the fusion peptide, a region that is directly involved in membrane interaction3. The low pH of endosomes activates fusion by facilitating irreversible conformational changes in the glycoprotein. The structures of the initial HA at neutral pH and the final HA at fusion pH have been investigated by electron microscopy4,5 and X-ray crystallography6-8. Here, to further study the process of fusion, we incubate HA for different times at pH 5.0 and directly image structural changes using single-particle cryo-electron microscopy. We describe three distinct, previously undescribed forms of HA, most notably a 150 Å-long triple-helical coil of HA2, which may bridge between the viral and endosomal membranes. Comparison of these structures reveals concerted conformational rearrangements through which the HA mediates membrane fusion.


Assuntos
Microscopia Crioeletrônica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H3N2 , Fusão de Membrana , Endossomos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/ultraestrutura , Concentração de Íons de Hidrogênio , Vírus da Influenza A Subtipo H3N2/química , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A Subtipo H3N2/ultraestrutura , Modelos Moleculares , Conformação Proteica , Fatores de Tempo
3.
Nature ; 588(7837): 327-330, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32942285

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors1-4, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein5-7. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage8-10. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2'), cleavage of which is required for the release of the fusion peptide11,12. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp61413-15 and leads to the destabilization of the structure of S2 proximal to the secondary (S2') cleavage site.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Fusão de Membrana/fisiologia , Ligação Proteica , Receptores de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/ultraestrutura , Microscopia Crioeletrônica , Furina/metabolismo , Humanos , Modelos Moleculares , Dobramento de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteólise , Receptores de Coronavírus/química , Receptores de Coronavírus/ultraestrutura , Glicoproteína da Espícula de Coronavírus/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 119(33): e2208011119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939703

RESUMO

The subunits of the influenza hemagglutinin (HA) trimer are synthesized as single-chain precursors (HA0s) that are proteolytically cleaved into the disulfide-linked polypeptides HA1 and HA2. Cleavage is required for activation of membrane fusion at low pH, which occurs at the beginning of infection following transfer of cell-surface-bound viruses into endosomes. Activation results in extensive changes in the conformation of cleaved HA. To establish the overall contribution of cleavage to the mechanism of HA-mediated membrane fusion, we used cryogenic electron microscopy (cryo-EM) to directly image HA0 at neutral and low pH. We found extensive pH-induced structural changes, some of which were similar to those described for intermediates in the refolding of cleaved HA at low pH. They involve a partial extension of the long central coiled coil formed by melting of the preexisting secondary structure, threading it between the membrane-distal domains, and subsequent refolding as extended helices. The fusion peptide, covalently linked at its N terminus, adopts an amphipathic helical conformation over part of its length and is repositioned and packed against a complementary surface groove of conserved residues. Furthermore, and in contrast to cleaved HA, the changes in HA0 structure at low pH are reversible on reincubation at neutral pH. We discuss the implications of covalently restricted HA0 refolding for the cleaved HA conformational changes that mediate membrane fusion and for the action of antiviral drug candidates and cross-reactive anti-HA antibodies that can block influenza infectivity.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Fusão de Membrana , Orthomyxoviridae , Internalização do Vírus , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Concentração de Íons de Hidrogênio , Orthomyxoviridae/fisiologia , Conformação Proteica
5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33579792

RESUMO

The majority of currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses have mutant spike glycoproteins that contain the D614G substitution. Several studies have suggested that spikes with this substitution are associated with higher virus infectivity. We use cryo-electron microscopy to compare G614 and D614 spikes and show that the G614 mutant spike adopts a range of more open conformations that may facilitate binding to the SARS-CoV-2 receptor, ACE2, and the subsequent structural rearrangements required for viral membrane fusion.


Assuntos
COVID-19/virologia , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Microscopia Crioeletrônica , Humanos , Conformação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
6.
Proc Natl Acad Sci U S A ; 115(40): 10112-10117, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224494

RESUMO

Viruses with membranes fuse them with cellular membranes, to transfer their genomes into cells at the beginning of infection. For Influenza virus, the membrane glycoprotein involved in fusion is the hemagglutinin (HA), the 3D structure of which is known from X-ray crystallographic studies. The soluble ectodomain fragments used in these studies lacked the "membrane anchor" portion of the molecule. Since this region has a role in membrane fusion, we have determined its structure by analyzing the intact, full-length molecule in a detergent micelle, using cryo-EM. We have also compared the structures of full-length HA-detergent micelles with full-length HA-Fab complex detergent micelles, to describe an infectivity-neutralizing monoclonal Fab that binds near the ectodomain membrane anchor junction. We determine a high-resolution HA structure which compares favorably in detail with the structure of the ectodomain seen by X-ray crystallography; we detect, clearly, all five carbohydrate side chains of HA; and we find that the ectodomain is joined to the membrane anchor by flexible, eight-residue-long, linkers. The linkers extend into the detergent micelle to join a central triple-helical structure that is a major component of the membrane anchor.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H1N1/química , Anticorpos Antivirais/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Fragmentos Fab das Imunoglobulinas/química , Micelas , Domínios Proteicos , Estrutura Secundária de Proteína
8.
Nature ; 511(7510): 475-7, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24870229

RESUMO

H10N8 follows H7N9 and H5N1 as the latest in a line of avian influenza viruses that cause serious disease in humans and have become a threat to public health. Since December 2013, three human cases of H10N8 infection have been reported, two of whom are known to have died. To gather evidence relating to the epidemic potential of H10 we have determined the structure of the haemagglutinin of a previously isolated avian H10 virus and we present here results relating especially to its receptor-binding properties, as these are likely to be major determinants of virus transmissibility. Our results show, first, that the H10 virus possesses high avidity for human receptors and second, from the crystal structure of the complex formed by avian H10 haemagglutinin with human receptor, it is clear that the conformation of the bound receptor has characteristics of both the 1918 H1N1 pandemic virus and the human H7 viruses isolated from patients in 2013 (ref. 3). We conclude that avian H10N8 virus has sufficient avidity for human receptors to account for its infection of humans but that its preference for avian receptors should make avian-receptor-rich human airway mucins an effective block to widespread infection. In terms of surveillance, particular attention will be paid to the detection of mutations in the receptor-binding site of the H10 haemagglutinin that decrease its avidity for avian receptor, and could enable it to be more readily transmitted between humans.


Assuntos
Aves/virologia , Orthomyxoviridae/química , Orthomyxoviridae/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/química , Subtipo H7N9 do Vírus da Influenza A/química , Modelos Moleculares , Zoonoses/transmissão , Zoonoses/virologia
9.
Nucleic Acids Res ; 46(7): 3802-3812, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29897600

RESUMO

The multi-protein complex WRAD, formed by WDR5, RbBP5, Ash2L and Dpy30, binds to the MLL SET domain to stabilize the catalytically active conformation required for histone H3K4 methylation. In addition, the WRAD complex contributes to the targeting of the activated complex to specific sites on chromatin. RbBP5 is central to MLL catalytic activation, by making critical contacts with the other members of the complex. Interestingly its only major structural domain, a canonical WD40 repeat ß-propeller, is not implicated in this function. Here, we present the structure of the RbBP5 ß-propeller domain revealing a distinct, feature rich surface, dominated by clusters of Arginine residues. Our nuclear magnetic resonance binding data supports the hypothesis that in addition to the role of RbBP5 in catalytic activation, its ß-propeller domain is a platform for the recruitment of the MLL complexes to chromatin targets through its direct interaction with nucleic acids.


Assuntos
Proteínas de Ligação a DNA/química , Metilação , Complexos Multiproteicos/química , Proteínas Nucleares/química , Sítios de Ligação , Catálise , Cromatina/química , Cromatina/genética , Proteínas de Ligação a DNA/genética , Histonas/química , Histonas/genética , Humanos , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Ligação Proteica/genética , Conformação Proteica , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Repetições WD40/genética
10.
Nature ; 499(7459): 496-9, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23787694

RESUMO

Of the 132 people known to have been infected with H7N9 influenza viruses in China, 37 died, and many were severely ill. Infection seems to have involved contact with infected poultry. We have examined the receptor-binding properties of this H7N9 virus and compared them with those of an avian H7N3 virus. We find that the human H7 virus has significantly higher affinity for α-2,6-linked sialic acid analogues ('human receptor') than avian H7 while retaining the strong binding to α-2,3-linked sialic acid analogues ('avian receptor') characteristic of avian viruses. The human H7 virus does not, therefore, have the preference for human versus avian receptors characteristic of pandemic viruses. X-ray crystallography of the receptor-binding protein, haemagglutinin (HA), in complex with receptor analogues indicates that both human and avian receptors adopt different conformations when bound to human H7 HA than they do when bound to avian H7 HA. Human receptor bound to human H7 HA exits the binding site in a different direction to that seen in complexes formed by HAs from pandemic viruses and from an aerosol-transmissible H5 mutant. The human-receptor-binding properties of human H7 probably arise from the introduction of two bulky hydrophobic residues by the substitutions Gln226Leu and Gly186Val. The former is shared with the 1957 H2 and 1968 H3 pandemic viruses and with the aerosol-transmissible H5 mutant. We conclude that the human H7 virus has acquired some of the receptor-binding characteristics that are typical of pandemic viruses, but its retained preference for avian receptor may restrict its further evolution towards a virus that could transmit efficiently between humans, perhaps by binding to avian-receptor-rich mucins in the human respiratory tract rather than to cellular receptors.


Assuntos
Vírus da Influenza A/metabolismo , Influenza Humana/virologia , Ácido N-Acetilneuramínico/metabolismo , Receptores Virais/metabolismo , Animais , Sítios de Ligação , Aves/metabolismo , Aves/virologia , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H7N3/metabolismo , Vírus da Influenza A/química , Vírus da Influenza A/isolamento & purificação , Modelos Moleculares , Mucinas/química , Mucinas/metabolismo , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/química , Ligação Proteica , Conformação Proteica , Receptores Virais/química
11.
Nature ; 497(7449): 392-6, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23615615

RESUMO

Cell-surface-receptor binding by influenza viruses is a key determinant of their transmissibility, both from avian and animal species to humans as well as from human to human. Highly pathogenic avian H5N1 viruses that are a threat to public health have been observed to acquire affinity for human receptors, and transmissible-mutant-selection experiments have identified a virus that is transmissible in ferrets, the generally accepted experimental model for influenza in humans. Here, our quantitative biophysical measurements of the receptor-binding properties of haemagglutinin (HA) from the transmissible mutant indicate a small increase in affinity for human receptor and a marked decrease in affinity for avian receptor. From analysis of virus and HA binding data we have derived an algorithm that predicts virus avidity from the affinity of individual HA-receptor interactions. It reveals that the transmissible-mutant virus has a 200-fold preference for binding human over avian receptors. The crystal structure of the transmissible-mutant HA in complex with receptor analogues shows that it has acquired the ability to bind human receptor in the same folded-back conformation as seen for HA from the 1918, 1957 (ref. 4), 1968 (ref. 5) and 2009 (ref. 6) pandemic viruses. This binding mode is substantially different from that by which non-transmissible wild-type H5 virus HA binds human receptor. The structure of the complex also explains how the change in preference from avian to human receptors arises from the Gln226Leu substitution, which facilitates binding to human receptor but restricts binding to avian receptor. Both features probably contribute to the acquisition of transmissibility by this mutant virus.


Assuntos
Furões/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Especificidade de Hospedeiro , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Receptores Virais/metabolismo , Animais , Aves/metabolismo , Aves/virologia , Embrião de Galinha , Cristalografia por Raios X , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/patogenicidade , Modelos Biológicos , Modelos Moleculares , Mutação , Conformação Proteica , Especificidade da Espécie
12.
Biochem J ; 474(17): 3059-3073, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28694351

RESUMO

AMP-activated protein kinase (AMPK) plays a major role in regulating metabolism and has attracted significant attention as a therapeutic target for treating metabolic disorders. AMPK activity is stimulated more than 100-fold by phosphorylation of threonine 172 (Thr172). Binding of AMP to the γ subunit allosterically activates the kinase. Additionally, many small molecules, e.g. 991, have been identified that bind between the kinase domain and the carbohydrate-binding module of the ß subunit, stabilising their interaction and leading to activation. It was reported recently that non-phosphorylated Thr172 AMPK is activated by AMP and A769662. We present here the crystal structure of non-phosphorylated Thr172 AMPK in complex with AMP and 991. This structure reveals that the activation loop, as well as the complex overall, is similar to the Thr172 phosphorylated complex. We find that in the presence of AMP and 991 non-phosphorylated Thr172, AMPK is much less active than the Thr172 phosphorylated enzyme. In human cells, the basal level of Thr172 phosphorylation is very low (∼1%), but is increased 10-fold by treatment with 2-deoxyglucose. In cells lacking the major Thr172 kinases, LKB1 and CaMKKß, Thr172 phosphorylation is almost completely abolished, and AMPK activity is virtually undetectable. Our data show that AMP and 991 binding to non-phosphorylated Thr172 AMPK can induce an ordered, active-like, conformation of the activation loop explaining how AMPK activity can be measured in vitro without Thr172 phosphorylation. However, in a cellular context, phosphorylation of Thr172 is critical for significant activation of AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Compostos de Bifenilo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Células HEK293 , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Pironas/farmacologia , Tiofenos/farmacologia
13.
Proc Natl Acad Sci U S A ; 112(30): 9430-5, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170284

RESUMO

H5N1 avian influenza viruses remain a threat to public health mainly because they can cause severe infections in humans. These viruses are widespread in birds, and they vary in antigenicity forming three major clades and numerous antigenic variants. The most important features of the human monoclonal antibody FLD194 studied here are its broad specificity for all major clades of H5 influenza HAs, its high affinity, and its ability to block virus infection, in vitro and in vivo. As a consequence, this antibody may be suitable for anti-H5 therapy and as a component of stockpiles, together with other antiviral agents, for health authorities to use if an appropriate vaccine was not available. Our mutation and structural analyses indicate that the antibody recognizes a relatively conserved site near the membrane distal tip of HA, near to, but distinct from, the receptor-binding site. Our analyses also suggest that the mechanism of infectivity neutralization involves prevention of receptor recognition as a result of steric hindrance by the Fc part of the antibody. Structural analyses by EM indicate that three Fab fragments are bound to each HA trimer. The structure revealed by X-ray crystallography is of an HA monomer bound by one Fab. The monomer has some similarities to HA in the fusion pH conformation, and the monomer's formation, which results from the presence of isopropanol in the crystallization solvent, contributes to considerations of the process of change in conformation required for membrane fusion.


Assuntos
Anticorpos Monoclonais/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Hemaglutininas/química , Virus da Influenza A Subtipo H5N1/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Sítios de Ligação , Cristalografia por Raios X , Epitopos/química , Humanos , Concentração de Íons de Hidrogênio , Fragmentos de Imunoglobulinas/química , Imunoglobulina G/química , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Ligação Proteica , Conformação Proteica , Solventes/química
14.
Nature ; 472(7342): 230-3, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21399626

RESUMO

The heterotrimeric AMP-activated protein kinase (AMPK) has a key role in regulating cellular energy metabolism; in response to a fall in intracellular ATP levels it activates energy-producing pathways and inhibits energy-consuming processes. AMPK has been implicated in a number of diseases related to energy metabolism including type 2 diabetes, obesity and, most recently, cancer. AMPK is converted from an inactive form to a catalytically competent form by phosphorylation of the activation loop within the kinase domain: AMP binding to the γ-regulatory domain promotes phosphorylation by the upstream kinase, protects the enzyme against dephosphorylation, as well as causing allosteric activation. Here we show that ADP binding to just one of the two exchangeable AXP (AMP/ADP/ATP) binding sites on the regulatory domain protects the enzyme from dephosphorylation, although it does not lead to allosteric activation. Our studies show that active mammalian AMPK displays significantly tighter binding to ADP than to Mg-ATP, explaining how the enzyme is regulated under physiological conditions where the concentration of Mg-ATP is higher than that of ADP and much higher than that of AMP. We have determined the crystal structure of an active AMPK complex. The structure shows how the activation loop of the kinase domain is stabilized by the regulatory domain and how the kinase linker region interacts with the regulatory nucleotide-binding site that mediates protection against dephosphorylation. From our biochemical and structural data we develop a model for how the energy status of a cell regulates AMPK activity.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Animais , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Cinética , Magnésio/metabolismo , Mamíferos , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ligação Proteica , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , Termodinâmica
15.
Proc Natl Acad Sci U S A ; 111(30): 11175-80, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024224

RESUMO

In 2004 an hemagglutinin 3 neuraminidase 8 (H3N8) equine influenza virus was transmitted from horses to dogs in Florida and subsequently spread throughout the United States and to Europe. To understand the molecular basis of changes in the antigenicity of H3 hemagglutinins (HAs) that have occurred during virus evolution in horses, and to investigate the role of HA in the equine to canine cross-species transfer, we used X-ray crystallography to determine the structures of the HAs from two antigenically distinct equine viruses and from a canine virus. Structurally all three are very similar with the majority of amino acid sequence differences between the two equine HAs located on the virus membrane-distal molecular surface. HAs of canine viruses are distinct in containing a Trp-222 → Leu substitution in the receptor binding site that influences specificity for receptor analogs. In the fusion subdomain of canine and recent equine virus HAs a unique difference is observed by comparison with all other HAs examined to date. Analyses of site-specific mutant HAs indicate that a single amino acid substitution, Thr-30 → Ser, influences interactions between N-terminal and C-terminal regions of the subdomain that are important in the structural changes required for membrane fusion activity. Both structural modifications may have facilitated the transmission of H3N8 influenza from horses to dogs.


Assuntos
Substituição de Aminoácidos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H3N8/química , Animais , Cristalografia por Raios X , Doenças do Cão/genética , Doenças do Cão/metabolismo , Doenças do Cão/virologia , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Doenças dos Cavalos/genética , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/virologia , Cavalos , Vírus da Influenza A Subtipo H3N8/metabolismo , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Estrutura Terciária de Proteína
16.
Trends Biochem Sci ; 36(9): 470-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21782450

RESUMO

AMPK is a ubiquitous sensor of cellular energy status in eukaryotic cells. It is activated by stresses causing ATP depletion and, once activated, maintains energy homeostasis by phosphorylating targets that activate catabolism and inhibit energy-consuming processes. Evidence derived from non-mammalian orthologs suggests that its ancestral role was in the response to starvation for a carbon source. We review recent findings showing that AMPK is activated by ADP as well as AMP, and discuss the mechanism by which binding of these nucleotides prevent its dephosphorylation and inactivation. We also discuss the role of the carbohydrate-binding module on the ß subunit and the mechanisms by which it is activated by drugs and xenobiotics such as metformin and resveratrol.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético , Ativação Enzimática , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Humanos , Metformina/farmacologia , Fosforilação , Conformação Proteica , Resveratrol , Estilbenos/farmacologia , Transcrição Gênica , Leveduras/metabolismo
17.
Nature ; 461(7265): 762-7, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19767730

RESUMO

Polycomb group proteins have an essential role in the epigenetic maintenance of repressive chromatin states. The gene-silencing activity of the Polycomb repressive complex 2 (PRC2) depends on its ability to trimethylate lysine 27 of histone H3 (H3K27) by the catalytic SET domain of the EZH2 subunit, and at least two other subunits of the complex: SUZ12 and EED. Here we show that the carboxy-terminal domain of EED specifically binds to histone tails carrying trimethyl-lysine residues associated with repressive chromatin marks, and that this leads to the allosteric activation of the methyltransferase activity of PRC2. Mutations in EED that prevent it from recognizing repressive trimethyl-lysine marks abolish the activation of PRC2 in vitro and, in Drosophila, reduce global methylation and disrupt development. These findings suggest a model for the propagation of the H3K27me3 mark that accounts for the maintenance of repressive chromatin domains and for the transmission of a histone modification from mother to daughter cells.


Assuntos
Cromatina/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inativação Gênica , Histonas/química , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Regulação Alostérica , Animais , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ativação Enzimática , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Metilação , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Complexo Repressor Polycomb 2 , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Especificidade por Substrato
18.
Proc Natl Acad Sci U S A ; 109(52): 21474-9, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236176

RESUMO

The hemagglutinin (HA) of influenza A(H3N2) virus responsible for the 1968 influenza pandemic derived from an avian virus. On introduction into humans, its receptor binding properties had changed from a preference for avian receptors (α2,3-linked sialic acid) to a preference for human receptors (α2,6-linked sialic acid). By 2001, the avidity of human H3 viruses for avian receptors had declined, and since then the affinity for human receptors has also decreased significantly. These changes in receptor binding, which correlate with increased difficulties in virus propagation in vitro and in antigenic analysis, have been assessed by virus hemagglutination of erythrocytes from different species and quantified by measuring virus binding to receptor analogs using surface biolayer interferometry. Crystal structures of HA-receptor analog complexes formed with HAs from viruses isolated in 2004 and 2005 reveal significant differences in the conformation of the 220-loop of HA1, relative to the 1968 structure, resulting in altered interactions between the HA and the receptor analog that explain the changes in receptor affinity. Site-specific mutagenesis shows the HA1 Asp-225→Asn substitution to be the key determinant of the decreased receptor binding in viruses circulating since 2005. Our results indicate that the evolution of human influenza A(H3N2) viruses since 1968 has produced a virus with a low propensity to bind human receptor analogs, and this loss of avidity correlates with the marked reduction in A(H3N2) virus disease impact in the last 10 y.


Assuntos
Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Receptores Virais/metabolismo , Animais , Sítios de Ligação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Interferometria , Células Madin Darby de Rim Canino , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo , Ligação Proteica , Multimerização Proteica , Eletricidade Estática
19.
Nature ; 453(7199): 1258-61, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18480754

RESUMO

The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection. Oseltamivir (Tamiflu) and zanamivir (Relenza) are two currently used neuraminidase inhibitors that were developed using knowledge of the enzyme structure. It has been proposed that the closer such inhibitors resemble the natural substrate, the less likely they are to select drug-resistant mutant viruses that retain viability. However, there have been reports of drug-resistant mutant selection in vitro and from infected humans. We report here the enzymatic properties and crystal structures of neuraminidase mutants from H5N1-infected patients that explain the molecular basis of resistance. Our results show that these mutants are resistant to oseltamivir but still strongly inhibited by zanamivir owing to an altered hydrophobic pocket in the active site of the enzyme required for oseltamivir binding. Together with recent reports of the viability and pathogenesis of H5N1 (ref. 7) and H1N1 (ref. 8) viruses with neuraminidases carrying these mutations, our results indicate that it would be prudent for pandemic stockpiles of oseltamivir to be augmented by additional antiviral drugs, including zanamivir.


Assuntos
Farmacorresistência Viral , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/enzimologia , Mutação/genética , Neuraminidase/química , Neuraminidase/genética , Oseltamivir/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/virologia , Cinética , Modelos Moleculares , Conformação Molecular , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Oseltamivir/química , Oseltamivir/metabolismo , Ligação Proteica , Zanamivir/farmacologia
20.
Cell Biosci ; 14(1): 81, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886783

RESUMO

BACKGROUND: Histone ubiquitination modification is emerging as a critical epigenetic mechanism involved in a range of biological processes. In vitro reconstitution of ubiquitinated nucleosomes is pivotal for elucidating the influence of histone ubiquitination on chromatin dynamics. RESULTS: In this study, we introduce a Non-Denatured Histone Octamer Ubiquitylation (NDHOU) approach for generating ubiquitin or ubiquitin-like modified histone octamers. The method entails the co-expression and purification of histone octamers, followed by their chemical cross-linking to ubiquitin using 1,3-dibromoacetone. We demonstrate that nucleosomes reconstituted with these octamers display a high degree of homogeneity, rendering them highly compatible with in vitro biochemical assays. These ubiquitinated nucleosomes mimic physiological substrates in function and structure. Additionally, we have extended this method to cross-linking various histone octamers and three types of ubiquitin-like proteins. CONCLUSIONS: Overall, our findings offer an efficient strategy for producing ubiquitinated nucleosomes, advancing biochemical and biophysical studies in the field of chromatin biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA