Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Future Oncol ; 17(34): 4769-4783, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34751044

RESUMO

Background: Neuroblastoma is the most common extracranial solid tumor in childhood. Amplification of MYCN in neuroblastoma is a predictor of poor prognosis. Materials and methods: DNA methylation data from the TARGET data matrix were stratified into MYCN amplified and non-amplified groups. Differential methylation analysis, clustering, recursive feature elimination (RFE), machine learning (ML), Cox regression analysis and Kaplan-Meier estimates were performed. Results and Conclusion: 663 CpGs were differentially methylated between the two groups. A total of 25 CpGs were selected by RFE for clustering and ML, and a 100% clustering accuracy was obtained. ML validation on three external datasets produced high accuracy scores of 100%, 97% and 93%. Eight survival-associated CpGs were also identified. Therapeutic interventions may need to be targeted to patient subgroups.


Lay abstract Neuroblastoma is the most common extracranial solid tumor in childhood. Elevated levels of the MYCN protein in neuroblastoma is a predictor of poor prognosis. It is the most relevant prognostic factor in neuroblastoma and predicting MYCN gene amplification (which leads to increased gene expression and more protein) from epigenetic data rather than genetic testing might be useful in the oncology clinic. This study was designed to identify a DNA methylation (epigenetic) signature that can be used to diagnose MYCN amplification without actually testing for the gene. The authors also aimed to correlate this DNA methylation signature with patient survival and poorer prognosis. Based on statistical and computational methods applied to DNA methylation data for neuroblastoma, signatures that are predictive of MYCN amplification and poor prognosis were found, which clinicians can use for early patient diagnosis and selection of the best therapies for patients at high risk.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Epigênese Genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/mortalidade , Criança , Ilhas de CpG/genética , Conjuntos de Dados como Assunto , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Aprendizado de Máquina , Neuroblastoma/genética , Prognóstico , Intervalo Livre de Progressão , Medição de Risco/métodos
2.
Nature ; 496(7445): 311-6, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23598338

RESUMO

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.


Assuntos
Evolução Biológica , Peixes/classificação , Peixes/genética , Genoma/genética , Animais , Animais Geneticamente Modificados , Embrião de Galinha , Sequência Conservada/genética , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Peixes/anatomia & histologia , Peixes/fisiologia , Genes Homeobox/genética , Genômica , Imunoglobulina M/genética , Camundongos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Vertebrados/anatomia & histologia , Vertebrados/genética , Vertebrados/fisiologia
3.
BMC Med Genet ; 19(1): 95, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29879922

RESUMO

BACKGROUND: We investigated a South African family of admixed ancestry in which the first generation (G1) developed insidious progressive distal to proximal weakness in their twenties, while their offspring (G2) experienced severe unexpected symptoms of myalgia and cramps since adolescence. Our aim was to identify deleterious mutations that segregate with the affected individuals in this family. METHODS: Exome sequencing was performed on five cases, which included three affected G1 siblings and two pauci-symptomatic G2 offspring. As controls we included an unaffected G1 sibling and a spouse of one of the G1 affected individuals. Homozygous or potentially compound heterozygous variants that were predicted to be functional and segregated with the affected G1 siblings, were further evaluated. Additionally, we considered variants in all genes segregating exclusively with the affected (G1) and pauci-symptomatic (G2) individuals to address the possibility of a pseudo-autosomal dominant inheritance pattern in this family. RESULTS: All affected G1 individuals were homozygous for a novel truncating p.Tyr1433Ter DYSF (dysferlin) mutation, with their asymptomatic sibling and both pauci-symptomatic G2 offspring carrying only a single mutant allele. Sanger sequencing confirmed segregation of the variant. No additional potentially contributing variant was found in the DYSF or any other relevant gene in the pauci-symptomatic carriers. CONCLUSION: Our finding of a truncating dysferlin mutation confirmed dysferlinopathy in this family and we propose that the single mutant allele is the primary contributor to the neuromuscular symptoms seen in the second-generation pauci-symptomatic carriers.


Assuntos
Disferlina/genética , Exoma/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação , Doenças Neuromusculares/genética , Doenças Neuromusculares/patologia , Adolescente , Adulto , Feminino , Seguimentos , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Irmãos , Sequenciamento do Exoma , Adulto Jovem
4.
BMC Cancer ; 18(1): 377, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614978

RESUMO

BACKGROUND: Gene expression can be employed for the discovery of prognostic gene or multigene signatures cancer. In this study, we assessed the prognostic value of a 35-gene expression signature selected by pathway and machine learning based methods in adjuvant therapy-linked glioblastoma multiforme (GBM) patients from the Cancer Genome Atlas. METHODS: Genes with high expression variance was subjected to pathway enrichment analysis and those having roles in chemoradioresistance pathways were used in expression-based feature selection. A modified Support Vector Machine Recursive Feature Elimination algorithm was employed to select a subset of these genes that discriminated between rapidly-progressing and slowly-progressing patients. RESULTS: Survival analysis on TCGA samples not used in feature selection and samples from four GBM subclasses, as well as from an entirely independent study, showed that the 35-gene signature discriminated between the survival groups in all cases (p<0.05) and could accurately predict survival irrespective of the subtype. In a multivariate analysis, the signature predicted progression-free and overall survival independently of other factors considered. CONCLUSION: We propose that the performance of the signature makes it an attractive candidate for further studies to assess its utility as a clinical prognostic and predictive biomarker in GBM patients. Additionally, the signature genes may also be useful therapeutic targets to improve both progression-free and overall survival in GBM patients.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Transcriptoma , Biomarcadores , Neoplasias Encefálicas/mortalidade , Bases de Dados Genéticas , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Prognóstico , Transdução de Sinais , Análise de Sobrevida
5.
PLoS Comput Biol ; 12(2): e1004395, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26845152

RESUMO

Bioinformatics is now a critical skill in many research and commercial environments as biological data are increasing in both size and complexity. South African researchers recognized this need in the mid-1990s and responded by working with the government as well as international bodies to develop initiatives to build bioinformatics capacity in the country. Significant injections of support from these bodies provided a springboard for the establishment of computational biology units at multiple universities throughout the country, which took on teaching, basic research and support roles. Several challenges were encountered, for example with unreliability of funding, lack of skills, and lack of infrastructure. However, the bioinformatics community worked together to overcome these, and South Africa is now arguably the leading country in bioinformatics on the African continent. Here we discuss how the discipline developed in the country, highlighting the challenges, successes, and lessons learnt.


Assuntos
Biologia Computacional , Biotecnologia , Biologia Computacional/educação , Biologia Computacional/história , Biologia Computacional/organização & administração , História do Século XX , História do Século XXI , Humanos , África do Sul
6.
BMC Genomics ; 17: 561, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27503259

RESUMO

BACKGROUND: Iron metabolism and regulation is an indispensable part of species survival, most importantly for blood feeding insects. Iron regulatory proteins are central regulators of iron homeostasis, whose binding to iron response element (IRE) stem-loop structures within the UTRs of genes regulate expression at the post-transcriptional level. Despite the extensive literature on the mechanism of iron regulation in human, less attention has been given to insect and more specifically the blood feeding insects, where research has mainly focused on the characterization of ferritin and transferrin. We thus, examined the mechanism of iron homeostasis through a genome-wide computational identification of IREs and other enriched motifs in the UTRs of Glossina morsitans with the view to identify new IRE-regulated genes. RESULTS: We identified 150 genes, of which two are known to contain IREs, namely the ferritin heavy chain and the MRCK-alpha. The remainder of the identified genes is considered novel including 20 hypothetical proteins, for which an iron-regulatory mechanism of action was inferred. Forty-three genes were found with IRE-signatures of regulation in two or more insects, while 46 were only found to be IRE-regulated in two species. Notably 39 % of the identified genes exclusively shared IRE-signatures in other Glossina species, which are potentially Glossina-specific adaptive measures in addressing its unique reproductive biology and blood meal-induced iron overload. In line with previous findings, we found no evidence pertaining to an IRE regulation of Transferrin, which highlight the importance of ferritin heavy chain and the other proposed transporters in the tsetse fly. In the context of iron-sequestration, key players of tsetse immune defence against trypanosomes have been introduced namely 14 stress and immune response genes, while 28 cell-envelop, transport, and binding genes were assigned a putative role in iron trafficking. Additionally, we identified and annotated enriched motifs in the UTRs of the putative IRE-regulated genes to derive at a co-regulatory network that maintains iron homeostasis in tsetse flies. Three putative microRNA-binding sites namely Gy-box, Brd-box and K-box motifs were identified among the regulatory motifs, enriched in the UTRs of the putative IRE-regulated genes. CONCLUSION: Beyond our current view of iron metabolism in insects, with ferritin and transferrin as its key players, this study provides a comprehensive catalogue of genes with possible roles in the acquisition; transport and storage of iron hence iron homeostasis in the tsetse fly.


Assuntos
Ferro/metabolismo , Modelos Biológicos , Elementos de Resposta , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/metabolismo , Animais , Transporte Biológico , Vetores de Doenças , Genes de Insetos , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo
7.
Metab Brain Dis ; 31(1): 135-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26400817

RESUMO

D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.


Assuntos
Ciclosserina/farmacologia , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , RNA/genética , Adaptação Psicológica/efeitos dos fármacos , Animais , Regulação para Baixo/genética , Expressão Gênica/efeitos dos fármacos , Hipocampo , Masculino , Microinjeções , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA
8.
BMC Struct Biol ; 15: 8, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25928480

RESUMO

BACKGROUND: The coronavirus 3 chymotrypsin-like protease (3CL(pro)) is a validated target in the design of potential anticoronavirus inhibitors. The high degree of homology within the protease's active site and substrate conservation supports the identification of broad spectrum lead compounds. A previous study identified the compound ML188, also termed 16R, as an inhibitor of the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) 3CL(pro). This study will detail the generation of a homology model of the 3CL(pro) of the human coronavirus OC43 and determine the potential of 16R to form a broad-spectrum lead compound. MODELLER was used to generate a suitable three-dimensional model of the OC43 3CL(pro) and the Prime module of SchrÓ§dinger predicted the binding conformation and free energy of binding of 16R within the 3CL(pro) active site. Molecular dynamics further confirmed ligand stability and hydrogen bonding networks. RESULTS: A high quality homology model of the OC43 3CL(pro) was successfully generated in an active conformation. Further studies reproduced the binding pose of 16R within the active site of the generated model, where its free energy of binding was shown to equal that of the 3CL(pro) of SARS-CoV, a receptor it is experimentally proven to inhibit. The stability of the ligand was subsequently confirmed by molecular dynamics. CONCLUSION: The lead compound 16R may represent a broad-spectrum inhibitor of the 3CL(pro) of OC43 and potentially other coronaviruses. This study provides an atomistic structure of the 3CL(pro) of OC43 and supports further experimental validation of the inhibitory effects of 16R. These findings further confirm that the 3CL(pro) of coronaviruses can be inhibited by broad spectrum lead compounds.


Assuntos
Acetamidas/farmacologia , Coronavirus Humano OC43/enzimologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Domínio Catalítico , Proteases 3C de Coronavírus , Coronavirus Humano OC43/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química
9.
BMC Genomics ; 15: 437, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24906912

RESUMO

BACKGROUND: Population differentiation is the result of demographic and evolutionary forces. Whole genome datasets from the 1000 Genomes Project (October 2012) provide an unbiased view of genetic variation across populations from Europe, Asia, Africa and the Americas. Common population-specific SNPs (MAF > 0.05) reflect a deep history and may have important consequences for health and wellbeing. Their interpretation is contextualised by currently available genome data. RESULTS: The identification of common population-specific (CPS) variants (SNPs and SSV) is influenced by admixture and the sample size under investigation. Nine of the populations in the 1000 Genomes Project (2 African, 2 Asian (including a merged Chinese group) and 5 European) revealed that the African populations (LWK and YRI), followed by the Japanese (JPT) have the highest number of CPS SNPs, in concordance with their histories and given the populations studied. Using two methods, sliding 50-SNP and 5-kb windows, the CPS SNPs showed distinct clustering across large genome segments and little overlap of clusters between populations. iHS enrichment score and the population branch statistic (PBS) analyses suggest that selective sweeps are unlikely to account for the clustering and population specificity. Of interest is the association of clusters close to recombination hotspots. Functional analysis of genes associated with the CPS SNPs revealed over-representation of genes in pathways associated with neuronal development, including axonal guidance signalling and CREB signalling in neurones. CONCLUSIONS: Common population-specific SNPs are non-randomly distributed throughout the genome and are significantly associated with recombination hotspots. Since the variant alleles of most CPS SNPs are the derived allele, they likely arose in the specific population after a split from a common ancestor. Their proximity to genes involved in specific pathways, including neuronal development, suggests evolutionary plasticity of selected genomic regions. Contrary to expectation, selective sweeps did not play a large role in the persistence of population-specific variation. This suggests a stochastic process towards population-specific variation which reflects demographic histories and may have some interesting implications for health and susceptibility to disease.


Assuntos
Genética Populacional , Genoma Humano , Polimorfismo de Nucleotídeo Único , Grupos Raciais/genética , Alelos , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Humanos , Recombinação Genética , Seleção Genética
10.
Eur J Sport Sci ; 23(10): 2098-2108, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36680346

RESUMO

We developed a Biomedical Knowledge Graph model that is phenotype and biological function-aware through integrating knowledge from multiple domains in a Neo4j, graph database. All known human genes were assessed through the model to identify potential new risk genes for anterior cruciate ligament (ACL) ruptures and Achilles tendinopathy (AT). Genes were prioritised and explored in a case-control study comparing participants with ACL ruptures (ACL-R), including a sub-group with non-contact mechanism injuries (ACL-NON), to uninjured control individuals (CON). After gene filtering, 3376 genes, including 411 genes identified through previous whole exome sequencing, were found to be potentially linked to AT and ACL ruptures. Four variants were prioritised: HSPG2:rs2291826A/G, HSPG2:rs2291827G/A, ITGB2:rs2230528C/T and FGF9:rs2274296C/T. The rs2230528 CC genotype was over-represented in the CON group compared to ACL-R (p < 0.001) and ACL-NON (p < 0.001) and the TT genotype and T allele were over-represented in the ACL-R group and ACL-NON compared to CON (p < 0.001) group. Several significant differences in distributions were noted for the gene-gene interactions: (HSPG2:rs2291826, rs2291827 and ITGB2:rs2230528) and (ITGB2:rs2230528 and FGF9:rs2297429). This study substantiates the efficiency of using a prior knowledge-driven in silico approach to identify candidate genes linked to tendon and ACL injuries. Our biomedical knowledge graph identified and, with further testing, highlighted novel associations of the ITGB2 gene which has not been explored in a genetic case control association study, with ACL rupture risk. We thus recommend a multistep approach including bioinformatics in conjunction with next generation sequencing technology to improve the discovery potential of genomics technologies in musculoskeletal soft tissue injuries.HighlightsA biomedical knowledge graph was modelled for musculoskeletal soft tissue injuries to efficiently identify candidate genes for genetic susceptibility analyses.The biomedical knowledge graph and sequencing data identified potential biologically relevant variants to explore susceptibility to common tendon and ligament injuries. Specifically genetic variants within the ITGB2 and FGF9 genes were associated with ACL risk.Novel allele combinations (HSPG2-ITGB2 and ITGB2-FGF9) showcase the potential effect of ITGB2 in influencing risk of ACL rupture.


Assuntos
Tendão do Calcâneo , Lesões do Ligamento Cruzado Anterior , Tendinopatia , Humanos , Lesões do Ligamento Cruzado Anterior/genética , Ligamento Cruzado Anterior , Predisposição Genética para Doença , Estudos de Casos e Controles , Tendinopatia/genética , Loci Gênicos , Ruptura/genética , Fator 9 de Crescimento de Fibroblastos/genética
11.
Leuk Lymphoma ; 63(8): 1897-1906, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35249471

RESUMO

Chromosomal translocations and gene mutations are characteristics of the genomic profile of acute myeloid leukemia (AML). We aim to identify a gene signature associated with poor prognosis in AML patients with FLT3-ITD compared to AML patients with NPM1/CEBPA mutations. RNA-sequencing (RNA-Seq) count data were downloaded from the UCSC Xena browser. Samples were grouped by their mutation status into high and low-risk groups. Differential gene expression (DGE), machine learning (ML) and survival analyses were performed. A total of 471 differentially expressed genes (DEGs) were identified, of which 16 DEGs were used as features for the prediction of mutation status. An accuracy of 92% was obtained from the ML model. FHL1, SPNS3, and MPZL2 were found to be associated with overall survival in FLT3-ITD samples. FLT3-ITD mutation confers an indicative gene expression profile different from NPM1/CEBPA mutation, and the expression of FHL1, SPSN3, and MPZL2 can serve as prognostic indicators of unfavorable disease.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Criança , Humanos , Moléculas de Adesão Celular/genética , Tirosina Quinase 3 Semelhante a fms/genética , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Mutação , Proteínas Nucleares/genética , Nucleofosmina , Prognóstico , Regulação para Cima
12.
Oncotarget ; 11(46): 4293-4305, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33245713

RESUMO

Neuroblastoma is the most common extracranial solid tumor in childhood. Patients in high-risk group often have poor outcomes with low survival rates despite several treatment options. This study aimed to identify a genetic signature from gene expression profiles that can serve as prognostic indicators of survival time in patients of high-risk neuroblastoma, and that could be potential therapeutic targets. RNA-seq count data was downloaded from UCSC Xena browser and samples grouped into Short Survival (SS) and Long Survival (LS) groups. Differential gene expression (DGE) analysis, enrichment analyses, regulatory network analysis and machine learning (ML) prediction of survival group were performed. Forty differentially expressed genes (DEGs) were identified including genes involved in molecular function activities essential for tumor proliferation. DEGs used as features for prediction of survival groups included EVX2, NHLH2, PRSS12, POU6F2, HOXD10, MAPK15, RTL1, LGR5, CYP17A1, OR10AB1P, MYH14, LRRTM3, GRIN3A, HS3ST5, CRYAB and NXPH3. An accuracy score of 82% was obtained by the ML classification models. SMIM28 was revealed to possibly have a role in tumor proliferation and aggressiveness. Our results indicate that these DEGs can serve as prognostic indicators of survival in high-risk neuroblastoma patients and will assist clinicians in making better therapeutic and patient management decisions.

13.
J Orthop Res ; 38(8): 1856-1865, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31922278

RESUMO

Variants within genes encoding structural and regulatory elements of ligaments have been associated with musculoskeletal soft tissue injury risk. The role of intron 4-exon 5 variants within the α1 chain of type V collagen (COL5A1) gene and genes of the transforming growth factor-ß (TGF-ß) family, TGFBR3 and TGFBI, was investigated on the risk of anterior cruciate ligament (ACL) ruptures. A case-control genetic association study was performed on 210 control (CON) and 249 participants with surgically diagnosed ruptures (ACL), of which 147 reported a noncontact mechanism of injury (NON). Whole-exome sequencing data were used to prioritize variants of potential functional relevance. Genotyping for COL5A1 (rs3922912 G>A, rs4841926 C>T, and rs3124299 C>T), TGFBR3 (rs1805113 G>A and rs1805117 T>C), and TGFBI (rs1442 G>C) was performed using Taqman SNP genotyping assays. Significant overrepresentation of the G allele of TGFBR3 rs1805113 was observed in CON vs ACL (P = .014) and NON groups (P = .021). Similar results were obtained in a female with the G allele (CON vs ACL: P = .029; CON vs NON: P = .016). The TGFBI rs1442 CC genotype was overrepresented in the female ACL vs CON (P = .013). Associations of inferred allele combinations were observed in line with the above results. COL5A1 intron 4-exon 5 genomic interval was not associated with the risk of ACL ruptures. Instead, this novel study is the first to use this approach to identify variants within the TGF-ß signaling pathway to be implicated in the risk of ACL ruptures. A genetic susceptibility interval was identified to be explored in the context of extracellular matrix remodeling.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Colágeno Tipo V/genética , Proteínas da Matriz Extracelular/genética , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator de Crescimento Transformador beta/genética , Adolescente , Adulto , Feminino , Frequência do Gene , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Adulto Jovem
14.
BMC Med Genomics ; 12(Suppl 2): 46, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871540

RESUMO

BACKGROUND: Fat mass and obesity-associated (FTO) gene has been under close investigation since the discovery of its high impact on the obesity status in 2007 by a range of publications. Recent report on its implication in adipocytes underscored its molecular and functional mechanics in pathology. Still, the population specific features of the locus structure have not been approached in detail. METHODS: We analyzed the population specific haplotype profiles of FTO genomic locus identified by Genome Wide Association Studies (GWAS) for the high obesity risk by examining eighteen 1000G populations from 4 continental groups. The GWAS SNPs cluster is located in the FTO gene intron 1 spanning around 70 kb. RESULTS: We reconstructed the ancestral state of the locus, which comprised low-risk major allele found in all populations, and two minor risk-associated alleles, each one specific for African and European populations, correspondingly. The locus structure and its allele frequency distribution underscore the high risk allele frequency specifically for the European population. South Asian populations have the second highest frequency of risk alleles, while East Asian populations have the lowest. African population-specific minor allele was only partially risk-associated. All of the GWAS SNPs considered are manifested by low risk alleles as reference (major) ones (p > 0.5) in each of the continental groups. Strikingly, rs1421085, recently reported as a causal SNP, was found to be monomorphic in ancestral (African) populations, implying possible selection sweep in the course of its rapid fixation, as reported previously. CONCLUSION: The observations underscore varying FTO -linked risk in the manifestation of population specific epidemiology of genetically bound obesity. The results imply that the FTO locus is one of the major genetic determinants for obesity risk from GWAS SNPs set.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Obesidade/patologia , População Branca/genética , Alelos , Frequência do Gene , Genética Populacional , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Íntrons , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Fatores de Risco
15.
PLoS One ; 13(10): e0205860, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359423

RESUMO

Musculoskeletal soft tissue injuries are complex phenotypes with genetics being one of many proposed risk factors. Case-control association studies using the candidate gene approach have predominately been used to identify risk loci for these injuries. However, the ability to identify all risk conferring variants using this approach alone is unlikely. Therefore, this study aimed to further define the genetic profile of these injuries using an integrated omics approach involving whole exome sequencing and a customised analyses pipeline. The exomes of ten exemplar asymptomatic controls and ten exemplar cases with Achilles tendinopathy were individually sequenced using a platform that included the coverage of the untranslated regions and miRBase miRNA genes. Approximately 200 000 variants were identified in the sequenced samples. Previous research was used to guide a targeted analysis of the genes encoding the tenascin-C (TNC) glycoprotein and the α1 chain of type XXVII collagen (COL27A1) located on chromosome 9. Selection of variants within these genes were; however, not predetermined but based on a tiered filtering strategy. Four variants in TNC (rs1061494, rs1138545, rs2104772 and rs1061495) and three variants in the upstream COL27A1 gene (rs2567706, rs2241671 and rs2567705) were genotyped in larger Achilles tendinopathy and anterior cruciate ligament (ACL) rupture sample groups. The CC genotype of TNC rs1061494 (C/T) was associated with the risk of Achilles tendinopathy (p = 0.018, OR: 2.5 95% CI: 1.2-5.1). Furthermore, the AA genotype of the TNC rs2104772 (A/T) variant was significantly associated with ACL ruptures in the female subgroup (p = 0.035, OR: 2.3 95% CI: 1.1-5.5). An inferred haplotype in the TNC gene was also associated with the risk of Achilles tendinopathy. These results provide a proof of concept for the use of a customised pipeline for the exploration of a larger genomic dataset. This approach, using previous research to guide a targeted analysis of the data has generated new genetic signatures in the biology of musculoskeletal soft tissue injuries.


Assuntos
Tendão do Calcâneo/patologia , Lesões do Ligamento Cruzado Anterior/genética , Exoma , Colágenos Fibrilares/genética , Tenascina/genética , Tendinopatia/genética , Adulto , Alelos , Ligamento Cruzado Anterior/patologia , Lesões do Ligamento Cruzado Anterior/patologia , Estudos de Casos e Controles , Feminino , Colágenos Fibrilares/sangue , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Risco , Ruptura/patologia , África do Sul , Tenascina/sangue , Tendinopatia/patologia , Sequenciamento do Exoma
17.
Trends Genet ; 18(1): 5-8, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11750687

RESUMO

Acquisition of new genetic material through horizontal gene transfer has been an important feature in the evolution of many pathogenic bacteria. Here, we report the presence of 19 genes of eukaryotic origin in the genome of Mycobacterium tuberculosis, some of which are unique to the M. tuberculosis complex. These genes, having been retained in the genome through selective advantage, most probably have key functions in the organism and in mammalian tuberculosis. We explore the role these genes might have in manipulation of the host immune system by altering the balance of steroid hormones.


Assuntos
Genes Bacterianos , Mycobacterium tuberculosis/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Evolução Biológica , Transferência Genética Horizontal , Humanos , Dados de Sequência Molecular , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Homologia de Sequência de Aminoácidos , Virulência/genética
18.
Biotechniques ; 62(1): 18-30, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28118812

RESUMO

Next-generation sequencing (NGS) of whole genomes and exomes is a powerful tool in biomedical research and clinical diagnostics. However, the vast amount of data produced by NGS introduces new challenges and opportunities, many of which require novel computational and theoretical approaches when it comes to identifying the causal variant(s) for a disease of interest. While workflows and associated software to process raw data and produce high-confidence variant calls have significantly improved, filtering tens of thousands of candidates to identify a subset relevant to a specific study is still a complex exercise best left to bioinformaticists. However, as this prioritization procedure requires biological/biomedical reasoning, biologists and clinicians are increasingly motivated to handle the task themselves. Here, we describe a set of guidelines, tools, and online resources that can be used to identify functional variants from whole-genome and whole-exome variant calls and then prioritize these variants with potential associations to phenotypes of interest. Insights gained from a recently published analysis of protein-coding gene variation in >60,000 humans by the Exome Aggregation Consortium (ExAC) are also taken into account.


Assuntos
Bases de Dados Genéticas , Variação Genética/genética , Genoma/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Animais , Exoma/genética , Humanos , Software
19.
Neuromuscul Disord ; 27(9): 816-825, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28673556

RESUMO

Treatment-resistant ophthalmoplegia (OP-MG) is not uncommon in individuals with African genetic ancestry and myasthenia gravis (MG). To identify OP-MG susceptibility genes, extended whole exome sequencing was performed using extreme phenotype sampling (11 OP-MG vs 4 control-MG) all with acetylcholine receptor-antibody positive MG. This approach identified 356 variants that were twice as frequent in OP-MG compared to control-MG individuals. After performing probability test estimates and filtering variants according to those 'suggestive' of association with OP-MG (p < 0.05), only three variants remained which were expressed in extraocular muscles. Validation in 25 OP-MG and 50 control-MG cases supported the association of DDX17delG (p = 0.014) and SPTLC3insACAC (p = 0.055) with OP-MG, but ST8SIA1delCCC could not be verified by Sanger sequencing. A parallel approach, using a semantic model informed by current knowledge of MG-pathways, identified an African-specific interleukin-6 receptor (IL6R) variant, IL6R c.*3043 T>C, that was more frequent in OP-MG compared to control-MG cases (p = 0.069) and population controls (p = 0.043). A weighted genetic risk score, derived from the odds ratios of association of these variants with OP-MG, correlated with the OP-MG phenotype as opposed to control MG. This unbiased approach implicates several potentially functional gene variants in the gangliosphingolipid and myogenesis pathways in the development of the OP-MG subphenotype.


Assuntos
RNA Helicases DEAD-box/genética , Predisposição Genética para Doença , Mutação/genética , Miastenia Gravis/genética , Oftalmoplegia/genética , Serina C-Palmitoiltransferase/genética , Adolescente , Criança , Pré-Escolar , Biologia Computacional , Simulação por Computador , Feminino , Humanos , Lactente , Masculino , Miastenia Gravis/complicações , Oftalmoplegia/complicações , Fenótipo , Receptores de Interleucina-6/genética , Sequenciamento do Exoma
20.
Psychiatr Genet ; 27(4): 139-151, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28574862

RESUMO

OBJECTIVES: Post-traumatic stress disorder is characterized by impaired fear extinction and excessive anxiety. D-Cycloserine (DCS) has previously been shown to facilitate fear extinction and decrease anxiety in animal and human studies. This study utilized a contextual fear-conditioning animal model to investigate the involvement of microRNAs (miRNAs) in fear extinction and the reduction of anxiety, as mediated by the co-administration of DCS and behavioural fear extinction. METHODS: Fear conditioning consisted of an electric foot shock; fear extinction consisted of behavioural fear extinction co-administered with either DCS or saline. The light/dark avoidance test was used to evaluate anxiety-related behaviour subsequent to fear conditioning and was used to evaluate anxiety-related behaviour following fear conditioning and to subsequently group animals into well-adapted and maladapted subgroups. These subgroups also showed significant differences in terms of fear extinction. Small RNAs extracted from the left dorsal hippocampus were sequenced using next-generation sequencing to identify differentially expressed miRNAs associated with DCS-induced fear extinction and reduction of anxiety. In-silico prediction analyses identified mRNA targets (from data of the same animals) of the differentially expressed miRNAs. Two of the predicted mRNA-miRNA interactions were functionally investigated. RESULTS: Overall, 32 miRNAs were differentially expressed between rats that were fear conditioned, received DCS and were well adapted and rats that were fear conditioned, received saline and were maladapted. Nineteen of these miRNAs were predicted to target and regulate the expression of 63 genes differentially expressed between fear-conditioned, DCS-administered, well-adapted and fear-conditioned, saline-administered, and maladapted groups (several of which are associated with neuronal inflammation, learning and memory). Functional luciferase assays indicated that rno-mir-31a-5p may have regulated the expression of interleukin 1 receptor antagonist (Il1rn) and metallothionein 1a (Mt1a). CONCLUSION: These differentially expressed miRNAs may be mediators of gene expression changes that facilitated decreased neuronal inflammation, optimum learning and memory and contributed towards effective fear extinction and reduction of anxiety following the co-administration of DCS and behavioural fear extinction.


Assuntos
MicroRNAs/uso terapêutico , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/genética , Animais , Ansiedade/genética , Ansiedade/fisiopatologia , Transtornos de Ansiedade , Condicionamento Clássico/fisiologia , Ciclosserina/farmacologia , Ciclosserina/uso terapêutico , Modelos Animais de Doenças , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hipocampo/fisiopatologia , Masculino , Memória , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA