Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 29(1): 59, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654156

RESUMO

Skeletal muscle is the largest metabolic organ of the human body. Maintaining the best quality control and functional integrity of mitochondria is essential for the health of skeletal muscle. However, mitochondrial dysfunction characterized by mitochondrial dynamic imbalance and mitophagy disruption can lead to varying degrees of muscle atrophy, but the underlying mechanism of action is still unclear. Although mitochondrial dynamics and mitophagy are two different mitochondrial quality control mechanisms, a large amount of evidence has indicated that they are interrelated and mutually regulated. The former maintains the balance of the mitochondrial network, eliminates damaged or aged mitochondria, and enables cells to survive normally. The latter degrades damaged or aged mitochondria through the lysosomal pathway, ensuring cellular functional health and metabolic homeostasis. Skeletal muscle atrophy is considered an urgent global health issue. Understanding and gaining knowledge about muscle atrophy caused by mitochondrial dysfunction, particularly focusing on mitochondrial dynamics and mitochondrial autophagy, can greatly contribute to the prevention and treatment of muscle atrophy. In this review, we critically summarize the recent research progress on mitochondrial dynamics and mitophagy in skeletal muscle atrophy, and expound on the intrinsic molecular mechanism of skeletal muscle atrophy caused by mitochondrial dynamics and mitophagy. Importantly, we emphasize the potential of targeting mitochondrial dynamics and mitophagy as therapeutic strategies for the prevention and treatment of muscle atrophy, including pharmacological treatment and exercise therapy, and summarize effective methods for the treatment of skeletal muscle atrophy.


Assuntos
Dinâmica Mitocondrial , Mitofagia , Músculo Esquelético , Atrofia Muscular , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/terapia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Animais , Mitocôndrias/metabolismo , Mitocôndrias/patologia
2.
Curr Issues Mol Biol ; 45(3): 2073-2089, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36975503

RESUMO

The sirtuin family, a group of NAD+-dependent class 3 histone deacetylases (HDACs), was extensively studied initially as a group of longevity genes that are activated in caloric restriction and act in concert with nicotinamide adenine dinucleotides to extend the lifespan. Subsequent studies have found that sirtuins are involved in various physiological processes, including cell proliferation, apoptosis, cell cycle progression, and insulin signaling, and they have been extensively studied as cancer genes. In recent years, it has been found that caloric restriction increases ovarian reserves, suggesting that sirtuins may play a regulatory role in reproductive capacity, and interest in the sirtuin family has continued to increase. The purpose of this paper is to summarize the existing studies and analyze the role and mechanism of SIRT1, a member of the sirtuin family, in regulating ovarian function. Research and review on the positive regulation of SIRT1 in ovarian function and its therapeutic effect on PCOS syndrome.

3.
J Nanobiotechnology ; 21(1): 83, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894941

RESUMO

In this study, exosomes from cooked meat were extracted by ultra-high-speed centrifugation. Approximately 80% of exosome vesicles were within 20-200 nm. In addition, the surface biomarkers of isolated exosomes were evaluated using flow cytometry. Further studies showed the exosomal microRNA profiles were different among cooked porcine muscle, fat and liver. Cooked pork-derived exosomes were chronically administered to ICR mice by drinking for 80 days. The mice plasma levels of miR-1, miR-133a-3p, miR-206 and miR-99a were increased to varying degrees after drinking exosome enriched water. Furthermore, GTT and ITT results confirmed an abnormal glucose metabolism and insulin resistance in mice. Moreover, the lipid droplets were significantly increased in the mice liver. A transcriptome analysis performed with mice liver samples identified 446 differentially expressed genes (DEGs). Functional enrichment analysis found that DEGs were enriched in metabolic pathways. Overall, the results suggest that microRNAs derived form cooked pork may function as a critical regulator of metabolic disorder in mice.


Assuntos
Exossomos , MicroRNAs , Carne de Porco , Carne Vermelha , Camundongos , Animais , Suínos , MicroRNAs/metabolismo , Exossomos/metabolismo , Camundongos Endogâmicos ICR
4.
J Nanobiotechnology ; 21(1): 356, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777744

RESUMO

Currently, there is an increasing amount of evidence indicating that exosomes and the miRNAs they contain are crucial players in various biological processes. However, the role of exosomes and miRNAs in snake venom during the envenomation process remains largely unknown. In this study, fresh venom from Naja atra of different ages (2-month-old, 1-year-old, and 5-year-old) was collected, and exosomes were isolated through ultracentrifugation. The study found that exosomes with inactivated proteins and enzymes can still cause symptoms similar to cobra envenomation, indicating that substances other than proteins and enzymes in exosomes may also play an essential role in cobra envenomation. Furthermore, the expression profiles of isolated exosome miRNAs were analyzed. The study showed that a large number of miRNAs were co-expressed and abundant in cobra venom exosomes (CV-exosomes) of different ages, including miR-2904, which had high expression abundance and specific sequences. The specific miR-2094 derived from CV-exosomes (CV-exo-miR-2904) was overexpressed both in vitro and in vivo. As a result, CV-exo-miR-2904 induced symptoms similar to cobra envenomation in mice and caused liver damage, demonstrating that it plays a crucial role in cobra envenomation. These results reveal that CV-exosomes and the miRNAs they contain play a significant regulatory role in cobra envenomation. Our findings provide new insights for the treatment of cobra bites and the development of snake venom-based medicines.


Assuntos
Exossomos , MicroRNAs , Animais , Camundongos , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Elapidae/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo , Venenos de Serpentes/metabolismo
5.
Anim Biotechnol ; 34(9): 4713-4720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36927230

RESUMO

The estrogen receptor (ESR) gene and follicle-stimulating hormone ß (FSHß) gene are responsible for litter traits. The present study aimed to verify the polymorphisms of ESR and FSHß and assess their effects on the litter traits in 201 Large White pigs. Four SNPs (g.C669T, g.A1296G, g.C1665T and g.A1755G) were found in ESR. The TT genotype at g.C1665T locus and AA genotype at g.A1755G locus could significantly increase the total litter size of the first litter of American Large White pigs (p < 0.05). Eight SNPs were found in exon 3 of FSHß. The AA genotype at g.A511G locus, AA and AG genotypes at g.A617G locus, CC and CT genotypes at g.C630T locus, CT and TT genotypes at g.C652T locus, CT and TT genotypes at g.C735T locus, AA and AG genotypes at g.A746G, AA and AG genotypes at g.A921G and CT genotype at g.C678T could significantly increase the litter size of different strains of Large White pigs (p < 0.05). Our study revealed that the genetic variations of ESR and FSHß were closely related to the litter trait of Large White pigs. Therefore, ESR and FSHß genes could be used as molecular markers for the genetic selection of Large White pigs.


Assuntos
Subunidade beta do Hormônio Folículoestimulante , Polimorfismo de Nucleotídeo Único , Gravidez , Feminino , Suínos/genética , Animais , Subunidade beta do Hormônio Folículoestimulante/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Tamanho da Ninhada de Vivíparos/genética
6.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240155

RESUMO

Spermatogenesis is temperature-dependent, and the increase in testicular temperature seriously affects mammalian spermatogenesis and semen quality. In this study, the testicular heat stress model of mice was made with a 43 °C water bath for 25 min, and the effects of heat stress on semen quality and spermatogenesis-related regulators were analyzed. On the 7th day after heat stress, testis weight shrank to 68.45% and sperm density dropped to 33.20%. High-throughput sequencing analysis showed that 98 microRNAs (miRNAs) and 369 mRNAs were down-regulated, while 77 miRNAs and 1424 mRNAs were up-regulated after heat stress. Through gene ontology (GO) analysis of differentially expressed genes and miRNA-mRNA co-expression networks, it was found that heat stress may be involved in the regulation of testicular atrophy and spermatogenesis disorders by affecting cell meiosis process and cell cycle. In addition, through functional enrichment analysis, co-expression regulatory network, correlation analysis and in vitro experiment, it was found that miR-143-3p may be a representative potential key regulatory factor affecting spermatogenesis under heat stress. In summary, our results enrich the understanding of miRNAs in testicular heat stress and provide a reference for the prevention and treatment of heat-stress-induced spermatogenesis disorders.


Assuntos
MicroRNAs , Testículo , Masculino , Animais , Camundongos , Testículo/metabolismo , MicroRNAs/metabolismo , Análise do Sêmen , Sêmen/metabolismo , Espermatogênese/genética , Mamíferos/metabolismo
7.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833999

RESUMO

As a novel non-coding RNA with important functions corresponding to various cellular stresses, the function of tRFs in angiogenesis remains unclear. Firstly, small RNA sequencing was performed on normal and post-muscle injury mouse tibialis anterior muscle to identify and analyse differentially expressed tRF/tiRNA. tRNA GlnCTG-derived fragments (tRFGlnCTG) were found to be overexpressed in high abundance in the damaged muscle. Subsequent in vitro experiments revealed that the overexpression of tRFGlnCTG suppressed the vascular endothelial cells' viability, cell cycle G1/S transition, proliferation, migration, and tube-formation capacity. Similarly, in vivo experiments showed that the tRFGlnCTG decreased the relative mRNA levels of vascular endothelial cell markers and pro-angiogenic factors and reduced the proportion of CD31-positive cells. Finally, luciferase activity analysis confirmed that the tRFGlnCTG directly targeted the 3'UTR of Antxr1, leading to a significant reduction in the mRNA expression of the target gene. These results suggest that tRFGlnCTG is a key regulator of vascular endothelial cell function. The results provide a new idea for further exploration of the molecular mechanisms that regulate angiogenesis.


Assuntos
Células Endoteliais , RNA de Transferência , Camundongos , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Endoteliais/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Sequência de Bases
8.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886989

RESUMO

Mammalian adipose tissue can be divided into white and brown adipose tissue based on its colour, location, and cellular structure. Certain conditions, such as sympathetic nerve excitement, can induce the white adipose adipocytes into a new type of adipocytes, known as beige adipocytes. The process, leading to the conversion of white adipocytes into beige adipocytes, is called white fat browning. The dynamic balance between white and beige adipocytes is closely related to the body's metabolic homeostasis. Studying the signal transduction pathways of the white fat browning might provide novel ideas for the treatment of obesity and alleviation of obesity-related glucose and lipid metabolism disorders. This article aimed to provide an overview of recent advances in understanding white fat browning and the role of BAT in lipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Termogênese , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético , Humanos , Mamíferos , Obesidade/metabolismo , Termogênese/fisiologia
9.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362267

RESUMO

Genistein (GEN), a phytoestrogen, has been reported to regulate skeletal muscle endocrine factor expression and muscle fiber type switching, but its role in skeletal muscle regeneration is poorly understood. As a class of epigenetic regulators widely involved in skeletal muscle development, microRNAs (miRNAs) have the potential to treat skeletal muscle injury. In this study, we identified miR-221 and miR-222 and their target genes MyoG and Tnnc1 as key regulators during skeletal muscle regeneration, and both were regulated by GEN. C2C12 myoblasts and C2C12 myotubes were then used to simulate the proliferation and differentiation of muscle satellite cells during skeletal muscle regeneration. The results showed that GEN could inhibit the proliferation of satellite cells and promote the differentiation of satellite cells by inhibiting the expression of miR-221/222. Subsequent in vitro and in vivo experiments showed that GEN improved skeletal muscle regeneration mainly by promoting satellite cell differentiation in the middle and late stages, by regulating miR-221/222 expression. These results suggest that miR-221/222 and their natural regulator GEN have potential applications in skeletal muscle regeneration.


Assuntos
Genisteína , MicroRNAs , Genisteína/farmacologia , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Proliferação de Células/genética
10.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419093

RESUMO

Gene transcripts or mRNAs and long noncoding RNAs (lncRNAs) are differentially expressed during porcine skeletal muscle development. However, only a few studies have been conducted on skeletal muscle transcriptome in pigs based on timepoints according to the growth curve for porcine. Here, we investigated gene expression in Qingyu pigs at three different growth stages: the inflection point with the maximum growth rate (MGI), the inflection point of the gradually increasing stage to the rapidly increasing stage (GRI), and the inflection point of the rapidly increasing stage to the slowly increasing stage (RSI). Subsequently, we explored gene expression profiles during muscle development at the MGI, GRI and RSI stages by Ribo-Zero RNA sequencing. Qingyu pigs reached the MGI, GRI and RSI stages at 156.40, 23.82 and 288.97 days of age with 51.73, 3.14 and 107.03 kg body weight, respectively. A total of 14,530 mRNAs and 11,970 lncRNAs were identified at the three stages, and 645, 323 differentially expressed genes (DEGs) and 696, 760 differentially expressed lncRNAs (DELs) were identified in the GRI vs. MGI, and RSI vs. MGI, comparisons. Functional enrichment analysis revealed that genes involved in immune system development and energy metabolism (mainly relate to amino acid, carbohydrate and lipid) were enriched at the GRI and MGI stages, respectively, whereas genes involved in lipid metabolism were enriched at the RSI stage. We further characterized G1430, an abundant lncRNA. The full-length sequence (316 nt) of lncRNA G1430 was determined by rapid amplification of cDNA ends (RACE). Subcellular distribution analysis by quantitative real-time PCR (qRT-PCR) revealed that G1430 is a cytoplasmic lncRNA. Binding site prediction and dual luciferase assay showed that lncRNA G1430 directly binds to microRNA 133a (miR-133a). Our findings provide the basis for further investigation of the regulatory mechanisms and molecular genetics of muscle development in pigs.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Animais , Linhagem Celular , Análise por Conglomerados , Feminino , Ontologia Genética , Músculo Esquelético/fisiologia , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos
11.
Xenobiotica ; 50(11): 1352-1358, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29171786

RESUMO

Genistein is a widely studied phytoestrogen. The effects of genistein on myoblasts were reported long ago, but the conclusions are controversial. In this study, we evaluated the effects of different concentrations of genistein on C2C12 myoblasts. Genistein treatment promoted myoblast proliferation in a dose-dependent manner in the concentration range of 0-2 µM/L, reaching its maximum effect at 2 µM/L. Proliferation then declined, and a concentration higher than 20 µM/L showed significant inhibition. In addition, genistein treatment promoted myoblast differentiation at a dose of 10 µM/L. However, at treatment concentrations higher than 10 µM/L, the effect on myoblast differentiation was rapidly inhibited as the concentration increased. Genistein treatment also down-regulated the expression of miR-222, resulting in increased expression of its target genes, MyoG, MyoD, and ERα and thereby promoting myoblast differentiation. Our results suggest that genistein has a dose-dependent and bidirectional regulation effect on myoblast proliferation and differentiation. We also found that genistein is a miRNA inducer, and it specifically affects the expression of miR-222 to regulate myoblast differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Genisteína , Mioblastos/efeitos dos fármacos , Fitoestrógenos , Humanos , Mioblastos/metabolismo , Mioblastos/fisiologia
12.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816816

RESUMO

Effective, targeted therapy for chronic liver disease nonalcoholic steatohepatitis (NASH) is imminent. MicroRNAs (miRNAs) are a potential therapeutic target, and natural products that regulate miRNA expression may be a safe and effective treatment strategy for liver disease. Here, we investigated the functional role of miR-451 and the therapeutic effects of genistein in the NASH mouse model. MiR-451 was downregulated in various types of liver inflammation, and subsequent experiments showed that miR-451 regulates liver inflammation via IL1ß. Genistein is a phytoestrogen with anti-inflammatory and anti-oxidant effects. Interestingly, we found that the anti-inflammatory effects of genistein were related to miR-451 and was partially antagonized by the miR-451 inhibitor. MiR-451 overexpression or genistein treatment inhibited IL1ß expression and inflammation. Taken together, this study shows that miR-451 has a protective effect on hepatic inflammation, and genistein can be used as a natural promoter of miR-451 to ameliorate NASH.


Assuntos
Genisteína/uso terapêutico , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Sequência de Bases , Linhagem Celular , Dieta Hiperlipídica , Regulação para Baixo/genética , Feminino , Genisteína/farmacologia , Humanos , Inflamação/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos Endogâmicos ICR , MicroRNAs/genética
13.
Int J Mol Sci ; 20(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212733

RESUMO

The biochemical and functional differences between oxidative and glycolytic muscles could affect human muscle health and animal meat quality. However, present understanding of the epigenetic regulation with respect to lncRNAs and circRNAs is rudimentary. Here, porcine oxidative and glycolytic skeletal muscles, which were at the growth curve inflection point, were sampled to survey variant global expression of lncRNAs and circRNAs using RNA-seq. A total of 4046 lncRNAs were identified, including 911 differentially expressed lncRNAs (p < 0.05). The cis-regulatory analysis identified target genes that were enriched for specific GO terms and pathways (p < 0.05), including the oxidation-reduction process, glycolytic process, and fatty acid metabolic. All these were closely related to different phenotypes between oxidative and glycolytic muscles. Additionally, 810 circRNAs were identified, of which 137 were differentially expressed (p < 0.05). Interestingly, some circRNA-miRNA-mRNA networks were found, which were closely linked to muscle fiber-type switching and mitochondria biogenesis in muscles. Furthermore, 44.69%, 39.19%, and 54.01% of differentially expressed mRNAs, lncRNAs, and circRNAs respectively were significantly enriched in pig quantitative trait loci (QTL) regions for growth and meat quality traits. This study reveals a mass of candidate lncRNAs and circRNAs involved in muscle physiological functions, which may improve understanding of muscle metabolism and development from an epigenetic perspective.


Assuntos
Metabolismo Energético/genética , Músculo Esquelético/metabolismo , Estresse Oxidativo/genética , RNA Circular/genética , RNA Longo não Codificante/genética , Animais , Biomarcadores , Mapeamento Cromossômico , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise , Oxirredução , Fenótipo , Locos de Características Quantitativas , RNA Mensageiro/genética , Suínos
14.
Molecules ; 24(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533306

RESUMO

Adipogenesis is a complex biological process and the main cause of obesity. Recently, microRNAs (miRNAs), a class of small endogenous non-coding RNAs, have been proven to play an important role in adipogenesis by the post-transcriptional regulation of target genes. In this current study, we observed an increment of miR-152 expression during the process of 3T3-L1 cell audiogenic differentiation. A functional analysis indicated that the overexpression of miR-152 inhibited pre-adipocyte proliferation and suppressed the expression of some cell cycle-related genes. Moreover, the overexpression of miR-152 promoted lipid accumulation in 3T3-L1 preadipocytes accompanied by increase of the expression of some pro-audiogenic genes. Additionally, a dual-luciferase reporter assay demonstrated lipoprotein lipase (LPL) was a direct target gene of miR-152 during preadipocyte differentiation. Further analysis showed that miR-152 was positively correlated with adipogenesis and intramuscular fat formation in vivo. Taken together, our findings suggest that miR-152 could suppress 3T3-L1 preadipocyte proliferation, whereas it could promote 3T3-L1 preadipocyte differentiation by negatively regulating LPL. The findings indicate that miR-152 might have a therapeutic significance for obesity and obesity-related metabolic syndrome.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular/genética , MicroRNAs/genética , Células 3T3-L1 , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica , Lipase Lipoproteica/genética , Camundongos , Modelos Biológicos , Interferência de RNA
15.
Int J Mol Sci ; 19(2)2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29414921

RESUMO

Intramuscular fat (IMF) content and composition are considered crucial indicators of porcine meat quality. However, the molecular mechanism of porcine IMF development is still mostly unclear. Recently, new evidence suggested that microRNA (miRNAs) play important roles in porcine intramuscular adipogenesis. Previously, microRNA-125a-5p (miR-125a-5p) was identified as an important regulator of adipogenesis. In the present study, we found that the expression of miR-125a-5p is dynamically regulated during porcine intramuscular preadipocytes differentiation and that its expression levels in different porcine muscle tissues were negatively involved with IMF content. To investigate the potential function role of miR-125a-5p in IMF development, porcine intramuscular preadipocytes were collected and transfected with miR-125a-5p mimics, inhibitors, or a negative control (NC), respectively. The results showed that overexpression of miR-125a-5p promoted proliferation and inhibited differentiation of porcine intramuscular preadipocytes while inhibition of miR-125a-5p had the opposite effects. Furthermore, a luciferase reporter assay demonstrated that porcine kruppel like factor 3 (KLF13) is a target gene of miR-125a-5p during porcine intramuscular preadipocytes differentiation. Interestingly, porcine ELOVL fatty acid elongase 6 (ELOVL6), a regulator of fatty acid composition, was also identified as a target gene of miR-125a-5p during porcine intramuscular adipogenesis. Further studies show that miR-125a-5p overexpression reduced total saturated fatty acids (SFA) content and monounsaturated fatty acids (MUFA)/SFA ratios while having no significant impact on polyunsaturated fatty acids (PUFA)/SFA and n-6/n-3 ratios. Taken together, our results identified that miR-125a-5p may be a novel regulator of porcine intramuscular adipogenesis and the fatty acid composition of porcine IMF.


Assuntos
Adipócitos/fisiologia , Adipogenia , Tecido Adiposo/fisiologia , Proliferação de Células , Carne , MicroRNAs/metabolismo , Músculos/fisiologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/genética , Músculos/citologia , Cultura Primária de Células , Suínos
16.
Int J Biol Macromol ; 270(Pt 1): 132057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710243

RESUMO

Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.


Assuntos
Epigênese Genética , Metabolismo dos Lipídeos , RNA , Metabolismo dos Lipídeos/genética , Humanos , Metilação , Animais , RNA/metabolismo , RNA/genética , Adipogenia/genética , Tecido Adiposo/metabolismo , Metilação de RNA
17.
Genes (Basel) ; 14(7)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37510303

RESUMO

As an environmentally-friendly agent, slightly acidic electrolyzed water (SAEW) was introduced in drinking water of newly weaned piglets for diarrhea prevention. In total, 72 piglets were employed and 3% SAEW was added into the normal temperature and warm (30 °C) tap water, respectively, for this 33-day feeding experiment. It was found that the total bacteria and coliforms in the drinking water were reduced by 70% and 100%, respectively, with the addition of 3% SAEW. After SAEW treatment, the average daily water and feed intakes of piglets were increased during the first 16 days, and the diarrhea rate was reduced by 100%, with not one case of diarrhea recorded at the end of the experiment. The microbiome results demonstrated that SAEW decreased the diversity of caecum bacteria with normal tap water supplied, and increased the richness of the caecum bacteria with warm tap water supplied. SAEW also increased the abundance of potentially beneficial genera Sutterella and Ruminococcaceae_UCG-005 and reduced the abundance of pathogenic Faecalibacterium. Moreover, twelve metabolic functions belonging to the cluster of metabolism and organismal functions, including digestion and the endocrine and excretory systems, were greatly enhanced. Correlation analysis indicated that the influence of intestinal pathogens on water and feed intakes and the diarrhea of piglets were decreased by SAEW. The results suggest that SAEW can be used as an antibiotic substitute to prevent diarrhea in newly weaned piglets.


Assuntos
Água Potável , Suínos , Animais , Ácidos , Bactérias/genética , Desmame , Diarreia/prevenção & controle , Diarreia/veterinária
18.
Sci Data ; 10(1): 703, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838754

RESUMO

The prevalence of obesity and overweight is steadily rising, posing a significant global challenge for humanity. The fundamental cause of obesity and overweight lies in the abnormal accumulation of adipose tissue. While numerous regulatory factors related to fat deposition have been identified in previous studies, a considerable number of regulatory mechanisms remain unknown. tRNA-derived small RNAs (tsRNAs), a novel class of non-coding RNAs, have emerged as significant regulators in various biological processes. In this study, we obtained small RNA sequencing data from subcutaneous white adipose tissue and omental white adipose tissue of lean and obese pigs. In addition, we similarly obtained tsRNAs profiles from scapular brown adipose tissue (BAT), inguinal white adipose tissue (iWAT) and epigonadal white adipose tissue (eWAT) of normal mice. Finally, we successfully identified a large number of expressed tsRNAs in each tissue type and identified tsRNAs conserved in different adipose tissues of pigs and mice. These datasets will be a valuable resource for elucidating the epigenetic mechanisms of fat deposition.


Assuntos
Sobrepeso , Transcriptoma , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Obesidade/genética , RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Suínos
19.
Genes (Basel) ; 14(7)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37510277

RESUMO

microRNAs are a class of small RNAs that have been extensively studied, which are involved in many biological processes and disease occurrence. The incidence of intrauterine growth restriction is higher in mammals, especially multiparous mammals. In this study, we found that the weight of the longissimus dorsi of intrauterine growth-restricted pigs was significantly lower than that of normal pigs. Then, intrauterine growth-restricted pig longissimus dorsi were used to characterize miRNA expression profiles by RNA sequencing. A total of 333 miRNAs were identified, of which 26 were differentially expressed. Functional enrichment analysis showed that these differentially expressed miRNAs regulate the expression of their target genes (such as PIK3R1, CCND2, AKT3, and MAP3K7), and these target genes play an important role in the proliferation and differentiation of skeletal muscle through signaling pathways such as the PI3K-Akt, MAPK, and FoxO signaling pathways. Furthermore, miRNA-451 was significantly upregulated in IUGR pig skeletal muscle. Overexpression of miR-451 in C2C12 cells significantly promoted the expression of Mb, Myod, Myog, Myh1, and Myh7, suggesting that miR-451 may be involved in the regulation of the myoblastic differentiation of C2C12 cells. Our results reveal the role of miRNA-451 in regulating myogenic differentiation of skeletal muscle in pigs with intrauterine growth restriction.


Assuntos
MicroRNAs , Humanos , Feminino , Suínos/genética , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/genética , Mamíferos/genética
20.
Front Microbiol ; 14: 1209389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608954

RESUMO

Gut microbiota play an important role in the gut ecology and development of pigs, which is always regulated by nutrients. This study investigated the effect of L-Citrulline on growth performance, carcass characteristics, and its potential regulatory mechanism. The results showed that 1% dietary L-Citrulline supplementation for 52 days significantly increased final weight, liveweight gain, carcass weight, and average backfat and markedly decreased drip loss (p < 0.05) of finishing pigs compared with the control group. Microbial analysis of fecal samples revealed a marked increase in α-diversity and significantly altered composition of gut microbiota in finishing pigs in response to L-Citrulline. In particular, these altered gut microbiota at the phylum and genus level may be mainly involved in the metabolic process of carbohydrate, energy, and amino acid, and exhibited a significant association with final weight, carcass weight, and backfat thickness. Taken together, our data revealed the potential role of L-Citrulline in the modulation of growth performance, carcass characteristics, and the meat quality of finishing pigs, which is most likely associated with gut microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA