Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Cell ; 185(5): 755-758, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245477

RESUMO

Support for basic science has been eclipsed by initiatives aimed at specific medical problems. The latest example is the dismantling of the Skirball Institute at NYU School of Medicine. Here, we reflect on the achievements and mission underlying the Skirball to gain insight into the dividends of maintaining a basic science vision within the academic enterprises.


Assuntos
Academias e Institutos , Pesquisa Biomédica , Faculdades de Medicina
2.
Cell ; 155(7): 1596-609, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360280

RESUMO

Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem/fisiologia , Microglia/fisiologia , Sinapses , Animais , Receptor 1 de Quimiocina CX3C , Expressão Gênica , Camundongos , Microglia/citologia , Plasticidade Neuronal , Proteínas Quinases/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Transdução de Sinais
3.
Nat Methods ; 18(8): 959-964, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34354291

RESUMO

To understand neural circuit mechanisms underlying behavior, it is crucial to observe the dynamics of neuronal structure and function in different regions of the brain. Since current noninvasive imaging technologies allow cellular-resolution imaging of neurons only within ~1 mm below the cortical surface, the majority of mouse brain tissue remains inaccessible. While miniature optical imaging probes allow access to deep brain regions, cellular-resolution imaging is typically restricted to a small tissue volume. To increase the tissue access volume, we developed a clear optically matched panoramic access channel technique (COMPACT). With probe dimensions comparable to those of common gradient-index lenses, COMPACT enables a two to three orders of magnitude greater tissue access volume. We demonstrated the capabilities of COMPACT by multiregional calcium imaging in mice during sleep. We believe that large-volume in vivo imaging with COMPACT will be valuable to a variety of deep tissue imaging applications.


Assuntos
Encéfalo/fisiologia , Cálcio/metabolismo , Microscopia/métodos , Neuroimagem/métodos , Imagem Óptica/métodos , Sono/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
PLoS Biol ; 19(7): e3001337, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34292944

RESUMO

Peripheral nerve injury-induced mechanical allodynia is often accompanied by abnormalities in the higher cortical regions, yet the mechanisms underlying such maladaptive cortical plasticity remain unclear. Here, we show that in male mice, structural and functional changes in the primary somatosensory cortex (S1) caused by peripheral nerve injury require neuron-microglial signaling within the local circuit. Following peripheral nerve injury, microglia in the S1 maintain ramified morphology and normal density but up-regulate the mRNA expression of brain-derived neurotrophic factor (BDNF). Using in vivo two-photon imaging and Cx3cr1CreER;Bdnfflox mice, we show that conditional knockout of BDNF from microglia prevents nerve injury-induced synaptic remodeling and pyramidal neuron hyperactivity in the S1, as well as pain hypersensitivity in mice. Importantly, S1-targeted removal of microglial BDNF largely recapitulates the beneficial effects of systemic BDNF depletion on cortical plasticity and allodynia. Together, these findings reveal a pivotal role of cerebral microglial BDNF in somatosensory cortical plasticity and pain hypersensitivity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Encéfalo/metabolismo , Hiperalgesia/fisiopatologia , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Camundongos Knockout , Traumatismos dos Nervos Periféricos/fisiopatologia
5.
Phys Chem Chem Phys ; 26(12): 9586-9592, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38465400

RESUMO

The reactivity of Nbn+ (1 ≤ n ≤ 21) clusters with B2H6 is studied by using a self-developed multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). The Nbn+ clusters were generated by a magnetron sputtering source and reacted with the B2H6 gas under fully thermalized conditions in the downstream flow tube where the reaction time was accurately controlled and adjustable. The complete and partial dehydrogenation products NbnB1-4+ and NbnB1-4H1,2,4+ were detected, indicative of the removal of H2 and likely BHx moieties. Interestingly, these NbnB1-4+ and NbnB1-4H1,2,4+ products are limited to 3 ≤ n ≤ 6, suggesting that the small Nbn+ clusters are relatively more reactive than the larger Nbn>6+ clusters under the same conditions. By varying the B2H6 gas concentrations and the reactant doses introduced into the flow tube, and by changing the reaction time, we performed a detailed analysis of the reaction dynamics in combination with the DFT-calculated thermodynamics. It is demonstrated that the lack of cooperative active sites on the Nb1+ cations accounts for the weakened dehydrogenation efficiency. Nb2+ forms partial dehydrogenation products at a faster rate. In contrast, the Nbn>6+ clusters are subject to more flexible vibrational relaxation which disperse the energy gain of B2H6-adsorption and thus are unable to overcome the energy barriers for subsequent hydrogen atom transfer and H2 release.

6.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34873044

RESUMO

Changes in synaptic connections are believed to underlie long-term memory storage. Previous studies have suggested that sleep is important for synapse formation after learning, but how sleep is involved in the process of synapse formation remains unclear. To address this question, we used transcranial two-photon microscopy to investigate the effect of postlearning sleep on the location of newly formed dendritic filopodia and spines of layer 5 pyramidal neurons in the primary motor cortex of adolescent mice. We found that newly formed filopodia and spines were partially clustered with existing spines along individual dendritic segments 24 h after motor training. Notably, posttraining sleep was critical for promoting the formation of dendritic filopodia and spines clustered with existing spines within 8 h. A fraction of these filopodia was converted into new spines and contributed to clustered spine formation 24 h after motor training. This sleep-dependent spine formation via filopodia was different from retraining-induced new spine formation, which emerged from dendritic shafts without prior presence of filopodia. Furthermore, sleep-dependent new filopodia and spines tended to be formed away from existing spines that were active at the time of motor training. Taken together, these findings reveal a role of postlearning sleep in regulating the number and location of new synapses via promoting filopodial formation.


Assuntos
Dendritos/fisiologia , Atividade Motora/fisiologia , Pseudópodes/fisiologia , Células Piramidais/fisiologia , Sono/fisiologia , Animais , Proteínas de Bactérias , Cálcio/metabolismo , Feminino , Proteínas Luminescentes , Masculino , Camundongos , Plasticidade Neuronal , Restrição Física
7.
Chemphyschem ; 24(10): e202200530, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36807961

RESUMO

The conversion of ethane into value-added chemicals under ambient conditions has attracted much attention but the mechanisms remain not fully understood. Here we report a study on the reaction of ethane with thermalized Nbn + clusters based on a multiple-ion laminar flow tube reactor combined with a triple quadrupole mass spectrometer (MIFT-TQMS). It is found that ethane reacts with Nbn + clusters to form both products of dehydrogenation and methane-removal (odd-carbon products). Combined with density functional theory (DFT) calculations, we studied the reaction mechanisms of the C-C bond activation and C-H bond cleavage on the Nbn + clusters. It is unveiled that hydrogen atom transfer (HAT) initiates the reaction process, giving rise to the formation of Nb-C bonds and an elongated C-C distance in the HNbn + CH2 CH3 motif. Subsequent reactions allow for C-C bond activation and a competitive HAT process which is associated with CH4 removal or H2 release, resulting in the production of the observed carbides.

8.
J Phys Chem A ; 127(26): 5556-5564, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352269

RESUMO

We report a joint experimental and theoretical study on the reactivity of Agn+ clusters with H2S, D2O, and NH3. Complete dehydrogenation products are observed for Agn+ reacting with H2S, but no dehydrogenation products are found for D2O or NH3 under the same reaction condition. Theoretical calculations elucidate why Agn+ clusters show different reactivities with these inorganic hydrides. NH3 shows strong coordination with Agn+, but the dehydrogenation reactions are unfavorable; in contrast, the fragile H-S bonds and stable AgnS+ products facilitate the hydrogen evolution of H2S on Agn+. We fully analyzed the metal-ligand interactions of Agn+ clusters with three molecules and illustrated the reaction dynamics and charge-transfer interactions and altered the superatomic states during the formation of cluster sulfides. We expect this study to benefit the design of stable environmentally friendly desulfurization catalysts and also the understanding of the mechanism on ligand-protected metal clusters in wet chemistry.

9.
Pediatr Nephrol ; 38(6): 1897-1905, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36272027

RESUMO

BACKGROUND: The PedsQL 3.0 End Stage Renal Disease (ESRD) Module is a well-accepted instrument internationally but it is not available in the local language. We aimed to validate the Bahasa Melayu (Malay language) version and determine the health-related quality of life (HRQoL) scores amongst children with CKD in Malaysia. METHODS: The source questionnaire in English was translated into Bahasa Melayu. Linguistic validation guidelines by the MAPI Research Institute were followed. The already validated Bahasa Melayu PedsQL 4.0 Generic Core Scales was used for comparison. Sociodemographic data were collected during the interview. Statistical analyses were performed using SPSS version 25.0. RESULTS: Sixty-nine children aged 8 to 18 with CKD stages 4 and 5, with or without dialysis, and their caregivers were recruited. Mean age was 12.62 ± 2.77 (SD). Evaluation of the PedsQL 3.0 ESRD Module Bahasa Melayu version demonstrated good internal consistency (Cronbach alpha 0.82). There was good agreement between child self-report and parent proxy report in all domains; average intraclass correlation coefficients (ICC) were 0.78, 95% CI (0.71, 0.84). Scores obtained from Generic 4.0 scales correlated with the disease-specific ESRD 3.0 scale, Spearman's rho = 0.32, p = 0.007. The Kruskal-Wallis H test indicated that there were no significant differences between stages of CKD and their respective mean HRQoL score, χ2(2) = 2.88, p = 0.236. CONCLUSIONS: The PedsQL 3.0 ESRD Module Bahasa Melayu version is a reliable and feasible tool for cross-cultural adaptation. A longer prospective study may help better illustrate the quality of life in this group of children.


Assuntos
Nível de Saúde , Qualidade de Vida , Insuficiência Renal Crônica , Inquéritos e Questionários , Humanos , Criança , Adolescente , Malásia , Insuficiência Renal Crônica/psicologia , Insuficiência Renal Crônica/terapia , Reprodutibilidade dos Testes , Diálise Renal , Masculino , Feminino , Inquéritos e Questionários/normas
10.
J Phys Chem A ; 126(29): 4801-4809, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35830281

RESUMO

We report an in-depth study of the adsorption and reaction of NO with cationic Nbn+ (n = 1-20) clusters under thermalized conditions in a laminar flow tube reactor in tandem with a customized triple quadrupole mass spectrometer (FT-TQMS). It is found that the small-sized Nbn+ clusters (2 ≤ n ≤ 7) readily react with NO giving rise to dominant fragmentation products pertaining to the loss of a stable diatomic molecule NbO or NbN. In contrast, the reaction products of larger-sized clusters (n ≥ 10) proceed through diverse channels, including NO adsorption, N2/N2O release, and even NO2 formation. These experimental observations provided the incentive for us to dig deep into the reaction mechanism with the help of DFT calculations. In contrast to the NO-donation coordination in transition metal complexes, here the cationic Nbn+ clusters exhibit dominant electronic donation in initiating the reactions with NO molecules. We fully demonstrated the reaction rate constants, compared the reaction energy diagram of typical Nbn+ clusters, and unveiled the distinct interaction mechanism of niobium clusters available for NO activation and conversion.

11.
J Phys Chem A ; 126(7): 1123-1131, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35166550

RESUMO

Methane dehydrogenation and C-C coupling under mild conditions are very important but challenging in chemistry. Utilizing a customized time of flight mass spectrometer combined with a magnetron sputtering (MagS) cluster source, here, we have conducted a study on the reactions of methane with small silver and copper clusters simply by introducing methane in argon as the working gas for sputtering. Interestingly, a series of [M(CnH2n)]+ (M = Cu and Ag; n = 2-12) clusters were observed, indicating high-efficiency methane dehydrogenation in such a plasma-assisted chamber system. Density functional theory calculations find the lowest energy structures of the [M(CnH2n)]+ series pertaining to olefins indicative of both C-H bond activation of methane and C-C bond coupling. We analyzed the interactions involved in the [Cu(CnH2n)]+ and [Ag(CnH2n)]+ (n = 1-6) clusters and demonstrated the reaction coordinates for the "Cu+ + CH4" and "Ag+ + CH4." It is illustrated that the presence of a second methane molecule enables us to reduce the necessary energy of dehydrogenation, which concurs with the experimental observation of an absence of the metal carbine products Cu+CH2 and Ag+CH2, which are short-lived. Also, it is elucidated that the higher-lying excitation states of Cu+ and Ag+ ions enable more favorable dehydrogenation process and C═C bond formation, shedding light on the plasma assistance of the essence.

12.
BMC Public Health ; 22(1): 2121, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401244

RESUMO

BACKGROUND: Illicit drug poisoning (overdose) continues to be an important public health problem with overdose-related deaths currently recorded at an unprecedented level. Understanding the geographic variations in fatal overdose mortality is necessary to avoid disproportionate risk resulting from service access inequity. METHODS: We estimated the odds of fatal overdose per event from all cases captured by the overdose surveillance system in British Columbia (2015 - 2018), using both conventional logistic regression and Generalized Additive Models (GAM). The results of GAM were mapped to identify spatial-temporal trends in the risk of fatal overdose. RESULTS: We found that the odds of fatal overdose were about 30% higher in rural areas than in large urban centers, with some regions reporting odds 50% higher than others. Temporal variations in fatal overdose revealed an increasing trend over the entire province. However, the increase occurred earlier and faster in the Interior and Northern regions. CONCLUSION: Rural areas were disproportionately affected by fatal overdose; lack of access to harm reduction services may partly explain the elevated risk in these areas.


Assuntos
Overdose de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Drogas Ilícitas , Humanos , Colúmbia Britânica/epidemiologia , Overdose de Drogas/epidemiologia , Saúde Pública
13.
Neurobiol Dis ; 147: 105165, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166699

RESUMO

Perturbed neuronal Ca2+ homeostasis is implicated in Alzheimer's disease, which has primarily been demonstrated in mice with amyloid-ß deposits but to a lesser and more variable extent in tauopathy models. In this study, we injected AAV to express Ca2+ indicator in layer II/III motor cortex neurons and measured neuronal Ca2+ activity by two photon imaging in awake transgenic JNPL3 tauopathy and wild-type mice. Various biochemical measurements were conducted in postmortem mouse brains for mechanistic insight and a group of animals received two intravenous injections of a tau monoclonal antibody spaced by four days to test whether the Ca2+ dyshomeostasis was related to pathological tau protein. Under running conditions, we found abnormal neuronal Ca2+ activity in tauopathy mice compared to age-matched wild-type mice with higher frequency of Ca2+ transients, lower amplitude of peak Ca2+ transients and lower total Ca2+ activity in layer II/III motor cortex neurons. While at resting conditions, only Ca2+ frequency was increased. Brain levels of soluble pathological tau correlated better than insoluble tau levels with the degree of Ca2+ dysfunction in tauopathy mice. Furthermore, tau monoclonal antibody 4E6 partially rescued Ca2+ activity abnormalities in tauopathy mice after two intravenous injections and decreased soluble pathological tau protein within the brain. This correlation and antibody effects strongly suggest that the neuronal Ca2+ dyshomeostasis is causally linked to pathological tau protein. These findings also reveal more pronounced neuronal Ca2+ dysregulation in tauopathy mice than previously reported by two-photon imaging that can be partially corrected with an acute tau antibody treatment.


Assuntos
Cálcio/metabolismo , Córtex Motor/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Homeostase/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Tauopatias/patologia , Proteínas tau/metabolismo
14.
J Neuroinflammation ; 18(1): 81, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757565

RESUMO

BACKGROUND: Ischemia can induce rapid activation of microglia in the brain. As key immunocompetent cells, reactive microglia play an important role in pathological development of ischemic stroke. However, the role of activated microglia during the development of ischemia remains controversial. Thus, we aimed to investigate the function of reactive microglia in the early stage of ischemic stroke. METHODS: A Rose Bengal photothrombosis model was applied to induce targeted ischemic stroke in mice. CX3CR1CreER:R26iDTR mice were used to specifically deplete resident microglia through intragastric administration of tamoxifen (Ta) and intraperitoneal injection of diphtheria toxin (DT). At day 3 after ischemic stroke, behavioral tests were performed. After that, mouse brains were collected for further histological analysis and detection of mRNA expression of inflammatory factors. RESULTS: The results showed that specific depletion of microglia resulted in a significant decrease in ischemic infarct volume and improved performance in motor ability 3 days after stroke. Microglial depletion caused a remarkable reduction in the densities of degenerating neurons and inducible nitric oxide synthase positive (iNOS+) cells. Importantly, depleting microglia induced a significant increase in the mRNA expression level of anti-inflammatory factors TGF-ß1, Arg1, IL-10, IL-4, and Ym1 as well as a significant decline of pro-inflammatory factors TNF-α, iNOS, and IL-1ß 3 days after stroke. CONCLUSIONS: These results suggest that activated microglia is an important modulator of the brain's inflammatory response in stroke, contributing to neurological deficit and infarct expansion. Modulation of the inflammatory response through the elimination of microglia at a precise time point may be a promising therapeutic approach for the treatment of cerebral ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Isquemia Encefálica/patologia , Gliose/metabolismo , Gliose/patologia , Gliose/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Microglia/patologia , Acidente Vascular Cerebral/patologia
15.
Hepatology ; 71(1): 148-163, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31155734

RESUMO

The oncogene c-Myc is aberrantly expressed and plays a key role in malignant transformation and progression of hepatocellular carcinoma (HCC). Here, we report that c-Myc is significantly up-regulated by tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase, in hepatocarcinogenesis. High TRAF6 expression in clinical HCC samples correlates with poor prognosis, and the loss of one copy of the Traf6 gene in Traf6+/- mice significantly impairs liver tumorigenesis. Mechanistically, TRAF6 first interacts with and ubiquitinates histone deacetylase 3 (HDAC3) with K63-linked ubiquitin chains, which leads to the dissociation of HDAC3 from the c-Myc promoter and subsequent acetylation of histone H3 at K9, thereby epigenetically enhancing the mRNA expression of c-Myc. Second, the K63-linked ubiquitination of HDAC3 impairs the HDAC3 interaction with c-Myc and promotes c-Myc protein acetylation, which thereby enhances c-Myc protein stability by inhibiting carboxyl terminus of heat shock cognate 70-kDa-interacting protein-mediated c-Myc ubiquitination and degradation. Importantly, TRAF6/HDAC3/c-Myc signaling is also primed in hepatitis B virus-transgenic mice, unveiling a critical role for a mechanism in inflammation-cancer transition. In clinical specimens, TRAF6 positively correlates with c-Myc at both the mRNA and protein levels, and high TRAF6 and c-Myc expression is associated with an unfavorable prognosis, suggesting that TRAF6 collaborates with c-Myc to promote human hepatocarcinogenesis. Consistently, curbing c-Myc expression by inhibition of TRAF6 activity with a TRAF6 inhibitor peptide or the silencing of c-Myc by small interfering RNA significantly suppressed tumor growth in mice. Conclusion: These findings demonstrate the oncogenic potential of TRAF6 during hepatocarcinogenesis by modulating TRAF6/HDAC3/c-Myc signaling, with potential implications for HCC therapy.


Assuntos
Carcinogênese , Carcinoma Hepatocelular/genética , Genes myc/fisiologia , Histona Desacetilases/fisiologia , Neoplasias Hepáticas/genética , Fator 6 Associado a Receptor de TNF/fisiologia , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Estabilidade Proteica , Células Tumorais Cultivadas
16.
J Phys Chem A ; 125(48): 10392-10400, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34846886

RESUMO

Cyclotrimerization of acetylene to benzene has attracted significant interest, but the role of geometric and electronic effects on catalytic chemistry remains unclear. To fully elucidate the mechanism of catalytic acetylene-to-benzene conversion, we have performed a gas-phase reaction study of the Fen+, Con+, and Nin+ (n = 1-16) clusters with acetylene utilizing a customized mass spectrometer. It is found that their reactions with acetylene are initiated by C2H2 molecular adsorption and allow for dominant dehydrogenation with the relatively low partial pressure of the acetylene gas. However, at high acetylene concentrations, the cyclotrimerization in Mn+ + 3C2H2 (M = Fe, Co, Ni) becomes the dominant reaction channel. We demonstrate theoretically the favorable thermodynamics and reaction dynamics leading to the formation of the M+(C6H6) products. The results are discussed in terms of a cluster-catalyzed multimolecule synergistic effect and the cation-π interactions.

17.
Nature ; 520(7546): 180-5, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25822789

RESUMO

The brain has an extraordinary capacity for memory storage, but how it stores new information without disrupting previously acquired memories remains unknown. Here we show that different motor learning tasks induce dendritic Ca(2+) spikes on different apical tuft branches of individual layer V pyramidal neurons in the mouse motor cortex. These task-related, branch-specific Ca(2+) spikes cause long-lasting potentiation of postsynaptic dendritic spines active at the time of spike generation. When somatostatin-expressing interneurons are inactivated, different motor tasks frequently induce Ca(2+) spikes on the same branches. On those branches, spines potentiated during one task are depotentiated when they are active seconds before Ca(2+) spikes induced by another task. Concomitantly, increased neuronal activity and performance improvement after learning one task are disrupted when another task is learned. These findings indicate that dendritic-branch-specific generation of Ca(2+) spikes is crucial for establishing long-lasting synaptic plasticity, thereby facilitating information storage associated with different learning experiences.


Assuntos
Cálcio/metabolismo , Dendritos/metabolismo , Plasticidade Neuronal , Potenciais de Ação , Animais , Sinalização do Cálcio , Espinhas Dendríticas/metabolismo , Feminino , Interneurônios/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Memória/fisiologia , Camundongos , Córtex Motor/citologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Células Piramidais/metabolismo , Fatores de Tempo
18.
Acta Pharmacol Sin ; 42(12): 2016-2032, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34226664

RESUMO

Macrophage-mediated inflammation plays an important role in hypertensive cardiac remodeling, whereas effective pharmacological treatments targeting cardiac inflammation remain unclear. Lipoprotein-associated phospholipase A2 (Lp-PLA2) contributes to vascular inflammation-related diseases by mediating macrophage migration and activation. Darapladib, the most advanced Lp-PLA2 inhibitor, has been evaluated in phase III trials in atherosclerosis patients. However, the role of darapladib in inhibiting hypertensive cardiac fibrosis remains unknown. Using a murine angiotensin II (Ang II) infusion-induced hypertension model, we found that Pla2g7 (the gene of Lp-PLA2) was the only upregulated PLA2 gene detected in hypertensive cardiac tissue, and it was primarily localized in heart-infiltrating macrophages. As expected, darapladib significantly prevented Ang II-induced cardiac fibrosis, ventricular hypertrophy, and cardiac dysfunction, with potent abatement of macrophage infiltration and inflammatory response. RNA sequencing revealed that darapladib strongly downregulated the expression of genes and signaling pathways related to inflammation, extracellular matrix, and proliferation. Moreover, darapladib substantially reduced the Ang II infusion-induced expression of nucleotide-binding oligomerization domain-like receptor with pyrin domain 3 (NLRP3) and interleukin (IL)-1ß and markedly attenuated caspase-1 activation in cardiac tissues. Furthermore, darapladib ameliorated Ang II-stimulated macrophage migration and IL-1ß secretion in macrophages by blocking NLRP3 inflammasome activation. Darapladib also effectively blocked macrophage-mediated transformation of fibroblasts into myofibroblasts by inhibiting the activation of the NLRP3 inflammasome in macrophages. Overall, our study identifies a novel anti-inflammatory and anti-cardiac fibrosis role of darapladib in Lp-PLA2 inhibition, elucidating the protective effects of suppressing NLRP3 inflammasome activation. Lp-PLA2 inhibition by darapladib represents a novel therapeutic strategy for hypertensive cardiac damage treatment.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/antagonistas & inibidores , Benzaldeídos/uso terapêutico , Cardiotônicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Fibrose/prevenção & controle , Inflamação/prevenção & controle , Oximas/uso terapêutico , Angiotensina II , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Benzaldeídos/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Cardiotônicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fibrose/induzido quimicamente , Fibrose/metabolismo , Coração/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oximas/farmacologia
19.
Proc Natl Acad Sci U S A ; 115(37): 9306-9311, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150391

RESUMO

Fear conditioning-induced behavioral responses can be extinguished after fear extinction. While fear extinction is generally thought to be a form of new learning, several lines of evidence suggest that neuronal changes associated with fear conditioning could be reversed after fear extinction. To better understand how fear conditioning and extinction modify synaptic circuits, we examined changes of postsynaptic dendritic spines of layer V pyramidal neurons in the mouse auditory cortex over time using transcranial two-photon microscopy. We found that auditory-cued fear conditioning induced the formation of new dendritic spines within 2 days. The survived new spines induced by fear conditioning with one auditory cue were clustered within dendritic branch segments and spatially segregated from new spines induced by fear conditioning with a different auditory cue. Importantly, fear extinction preferentially caused the elimination of newly formed spines induced by fear conditioning in an auditory cue-specific manner. Furthermore, after fear extinction, fear reconditioning induced reformation of new dendritic spines in close proximity to the sites of new spine formation induced by previous fear conditioning. These results show that fear conditioning, extinction, and reconditioning induce cue- and location-specific dendritic spine remodeling in the auditory cortex. They also suggest that changes of synaptic connections induced by fear conditioning are reversed after fear extinction.


Assuntos
Córtex Auditivo/fisiologia , Espinhas Dendríticas/fisiologia , Medo/fisiologia , Rede Nervosa/fisiologia , Animais , Córtex Auditivo/citologia , Masculino , Camundongos Transgênicos , Rede Nervosa/citologia
20.
Br J Neurosurg ; : 1-7, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33641541

RESUMO

PURPOSE: To investigate the clinical performance, pathological characteristics, treatment and prognosis of salivary gland malignant tumor (SGMT) with skull base metastasis. METHODS: Five SGMT patients with skull base metastasis were retrospectively studied. Major clinical symptoms included headache, facial paralysis, and ear hearing loss. Three patients had previous history of SGMT resection. All patients underwent preoperative computed tomography (CT) and magnetic resonance imaging (MRI). Craniotomy was performed in three patients, and all the five patients underwent radiotherapy and chemotherapy. RESULTS: Two patients were confirmed as having adenocarcinoma, one patient was pathologically confirmed to have squamous cell carcinoma, one patient had ductal carcinoma, and one patient had acinar cell carcinoma. One patient died after 2 years of treatment, and the remaining 4 patients were followed up for 6 ∼ 24 months, suggesting that the tumor size was not enlarged or showed no local recurrence. CONCLUSION: SGMT with skull base metastasis is extremely rare, and due to similar imaging characteristics, it can be easily misdiagnosed as meningioma or schwannoma. Early diagnosis, extent of invasion, surgery and combination of chemotherapy and radiotherapy are the prognostic factors of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA