Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Cell Physiol ; 235(1): 408-420, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31230347

RESUMO

The atypical protein kinase C isoform ι (PKCι) is upregulated, which cooperates with mutated KRAS (mu-KRAS) to promote the development of pancreatic cancers. However, the exact role of PKCι in KRAS-mediated pancreatic tumorigenesis is not fully defined. In the present study, we demonstrate that mu-KRAS upregulates and activates PKCι, accompanied by dephosphorylation of large tumor suppressor (LATS), a key member of the growth-inhibiting Hippo signaling pathway. As a result, Yes-associated protein 1 (YAP1; a transcriptional coactivator) is dephosphorylated and translocates to the nucleus, which promotes transcription of downstream target genes to sustain the transformed growth of pancreatic cancer cells. In contrast, when PKCι is suppressed by the chemical inhibitor or small-hairpin RNA, the levels of phosphorylated LATS and YAP1 are elevated and YAP1 is excluded from the nucleus, which enhances the susceptibility of pancreatic cancer cells harboring mu-KRAS to apoptosis. These findings shed new light on the mechanisms underlying the pancreatic tumorigenesis initiated by mu-KRAS, and suggest that the PKCι-YAP1 signaling may potentially be therapeutically targeted for restricting the growth and inducing apoptosis in pancreatic tumors expressing mu-KRAS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Isoenzimas/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Pancreáticas/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Sinalização YAP
2.
Br J Cancer ; 122(6): 904-911, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32001831

RESUMO

BACKGROUND: Nicotine is a major tobacco component and found at circulating concentrations in smokers' bloodstreams. Although considered a non-carcinogenic substance, nicotine rapidly defuses to tissues after being inhaled, inviting effects on cellular physiology, particularly in the lung. Widespread increased use of nicotine-based e-cigarettes, especially in younger adults, creates an urgent need for improved understanding of nicotine's potential to impact human health. METHODS: Biological and biochemistry methods were used to interrogate the potential for nicotine to weaken the genetic integrity of murine and human-lung epithelial cells. RESULTS: We demonstrate that nicotine potentiates the growth of the lung epithelial cells in a dose-response fashion. Nicotine elicits an acute increase in reactive oxygen species (ROS), which persists at moderately high levels throughout the duration of nicotine exposure. The aberrant increases in ROS appear to induce ER stress and UPR activation, as reflected by BIP upregulation and PERK phosphorylation. Furthermore, prolonged nicotine exposure interferes with p53 function triggered by sodium arsenite. Unless p53 is suppressed, persistent nicotine exposure does not induce colony formation by lung epithelial cells in soft agar. CONCLUSION: The data suggest that nicotine treatment, by perturbing intracellular redox state and altering p53 function, can create a pro-tumorigenic environment in lung epithelium. The results suggest caution in using nicotine replacement therapies and e-cigarettes.


Assuntos
Carcinogênese/patologia , Células Epiteliais/patologia , Neoplasias Pulmonares/etiologia , Nicotina/efeitos adversos , Animais , Humanos , Neoplasias Pulmonares/patologia , Camundongos
3.
J Biol Chem ; 291(3): 1148-61, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472929

RESUMO

Bone remodeling is controlled by dual actions of osteoclasts (OCs) and osteoblasts (OBs). The calcium-sensitive nuclear factor of activated T cells (NFAT) c1 transcription factor, as an OC signature gene, regulates differentiation of OCs downstream of bone morphogenetic protein-2 (BMP-2)-stimulated osteoblast-coded factors. To analyze a functional link between BMP-2 and NFATc1, we analyzed bones from OB-specific BMP-2 knock-out mice for NFATc1 expression by immunohistochemical staining and found significant reduction in NFATc1 expression. This indicated a requirement of BMP-2 for NFATc1 expression in OBs. We showed that BMP-2, via the receptor-specific Smad pathway, regulates expression of NFATc1 in OBs. Phosphatidylinositol 3-kinase/Akt signaling acting downstream of BMP-2 also drives NFATc1 expression and transcriptional activation. Under the basal condition, NFATc1 is phosphorylated. Activation of NFAT requires dephosphorylation by the calcium-dependent serine/threonine phosphatase calcineurin. We examined the role of calcium in BMP-2-stimulated regulation of NFATc1 in osteoblasts. 1,2Bis(2aminophenoxy)ethaneN,N,N',N'-tetraacetic acid acetoxymethyl ester, an inhibitor of intracellular calcium abundance, blocked BMP-2-induced transcription of NFATc1. Interestingly, BMP-2 induced calcium release from intracellular stores and increased calcineurin phosphatase activity, resulting in NFATc1 nuclear translocation. Cyclosporin A, which inhibits calcineurin upstream of NFATc1, blocked BMP-2-induced NFATc1 mRNA and protein expression. Expression of NFATc1 directly increased its transcription and VIVIT peptide, an inhibitor of NFATc1, suppressed BMP-2-stimulated NFATc1 transcription, confirming its autoregulation. Together, these data show a role of NFATc1 downstream of BMP-2 in mouse bone development and provide novel evidence for the presence of a cross-talk among Smad, phosphatidylinositol 3-kinase/Akt, and Ca(2+) signaling for BMP-2-induced NFATc1 expression through an autoregulatory loop.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição NFATC/agonistas , Osteoblastos/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 2/genética , Calcineurina/química , Calcineurina/metabolismo , Quelantes de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad5/agonistas , Proteína Smad5/genética , Proteína Smad5/metabolismo
4.
Mol Carcinog ; 56(7): 1808-1815, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28218450

RESUMO

Hexavalent chromium [Cr(VI)] is a well-known environment carcinogen. The exposure of Cr(VI) through contaminated soil, air particles, and drinking water is a strong concern for the public health worldwide. While many studies have been done, it remains unclear which intracellular molecules transduce Cr(VI)-mediated carcinogenic signaling in cells to promote cancer. In this study, we demonstrated that upon Cr(VI) treatment, the intracellular receptor src was activated, which further upregulated Ras activity, leading to the augmentation of ROS and onset of ER stress in human lung epithelial BEAS-2B or keratinocytes. These cells were formed colonies in soft agar cultures following the persistent Cr(VI) treatment. Furthermore, anti-apoptotic factor Bcl-2 was upregulated and activated in the colonies. Thus, our study suggests that Cr(VI), though activating the src and Ras signaling axis, perturbs redox state and invokes ER stress for the establishment of carcinogenic actions in the cells. In this process, Bcl-2 appears playing an important role. By uncovering these intracellular targets, our study may help developing novel strategies for better environmental protection, especially in areas contaminated or polluted by Cr(VI) as well as for effective cancer treatments.


Assuntos
Transformação Celular Neoplásica/patologia , Cromo/efeitos adversos , Queratinócitos/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Neoplasias Cutâneas/patologia , Proteínas ras/metabolismo , Quinases da Família src/metabolismo , Carcinógenos Ambientais/efeitos adversos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/metabolismo
5.
Toxicol Appl Pharmacol ; 306: 98-104, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27425828

RESUMO

In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure.


Assuntos
Arsênio/toxicidade , Carcinogênese/efeitos dos fármacos , Carcinógenos/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Carcinogênese/metabolismo , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
6.
J Biol Chem ; 289(8): 5340-7, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24391088

RESUMO

Radiotherapy is the current frontline cancer treatment, but the resulting severe side effects often pose a significant threat to cancer patients, raising a pressing need for the development of effective strategies for radiotherapy protection. We exploited the distinct metabolic characteristics between normal and malignant cells for a metabolic mechanism of normal tissue protection. We showed that low doses of arsenic induce HIF-1α, which activates a metabolic shift from oxidative phosphorylation to glycolysis, resulting in increased cellular resistance to radiation. Of importance is that low-dose arsenic-induced HIF-1α requires functional p53, limiting the glycolytic shift to normal cells. Using tumor-bearing mice, we provide proof of principle for selective normal tissue protection against radiation injury.


Assuntos
Arsênio/farmacologia , Metabolismo/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glicólise/efeitos dos fármacos , Glicólise/efeitos da radiação , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Irradiação Corporal Total
7.
J Biol Chem ; 288(34): 24503-17, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23821550

RESUMO

Skeletal remodeling consists of timely formation and resorption of bone by osteoblasts and osteoclasts in a quantitative manner. Patients with chronic myeloid leukemia receiving inhibitors of c-Abl tyrosine kinase often show reduced bone remodeling due to impaired osteoblast and osteoclast function. BMP-2 plays a significant role in bone generation and resorption by contributing to the formation of mature osteoblasts and osteoclasts. The effects of c-Abl on BMP-2-induced bone remodeling and the underlying mechanisms are not well studied. Using a pharmacological inhibitor and expression of a dominant negative mutant of c-Abl, we show an essential role of this tyrosine kinase in the development of bone nodules containing mature osteoblasts and formation of multinucleated osteoclasts in response to BMP-2. Calvarial osteoblasts prepared from c-Abl null mice showed the absolute requirement of this tyrosine kinase in maturation of osteoblasts and osteoclasts. Activation of phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling by BMP-2 leads to osteoblast differentiation. Remarkably, inhibition of c-Abl significantly suppressed BMP-2-stimulated PI 3-kinase activity and its downstream Akt phosphorylation. Interestingly, c-Abl regulated BMP-2-induced osteoclastogenic CSF-1 expression. More importantly, we identified the requirements of c-Abl in BMP-2 autoregulation and the expressions of alkaline phosphatase and osterix that are necessary for osteoblast differentiation. c-Abl contributed to BMP receptor-specific Smad-dependent transcription of CSF-1, osterix, and BMP-2. Finally, c-Abl associates with BMP receptor IA and regulates phosphorylation of Smad in response to BMP-2. We propose that activation of c-Abl is an important step, which induces into two signaling pathways involving noncanonical PI 3-kinase and canonical Smads to integrate BMP-2-induced osteogenesis.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteína Smad5/metabolismo , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/genética , Animais , Proteína Morfogenética Óssea 2/genética , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Fator Estimulador de Colônias de Macrófagos/biossíntese , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Osteoblastos/citologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Crânio/citologia , Crânio/metabolismo , Proteína Smad5/genética , Fator de Transcrição Sp7 , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
8.
Proc Natl Acad Sci U S A ; 108(29): 12001-6, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730163

RESUMO

There are currently two distinct models proposed to explain why both MDM2 and MDMX are required in p53 control, with a key difference centered on whether these two p53 inhibitors work together or independently. To test these two competing models, we generated knockin mice expressing a point mutation MDMX mutant (C462A) that is defective in MDM2 binding. This approach allowed a targeted disassociation of the MDM2/MDMX heterocomplex without affecting the ability of MDMX to bind to p53, and while leaving the MDM2 protein itself completely untouched. Significantly, Mdmx(C462A/C462A) homozygous mice died at approximately day 9.5 of embryonic development, as the result of a combination of apoptosis and decreased cell proliferation, as shown by TUNEL and BrdU incorporation assays, respectively. Interestingly, even though the MDMX mutant protein abundance was found slightly elevated in the Mdmx(C462A/C462A) homozygous embryos, both the abundance and activity of p53 were markedly increased. A p53-dependent death was demonstrated by the finding that concomitant deletion of p53 completely rescued the embryonic lethality in Mdmx(C462A/C462A) homozygous mice. Our data demonstrate that MDM2 and MDMX function as an integral complex in p53 control, providing insights into the nonredundant nature of the function of MDM2 and MDMX.


Assuntos
Regulação da Expressão Gênica/genética , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Apoptose/genética , Western Blotting , Bromodesoxiuridina , Técnicas de Introdução de Genes , Genótipo , Imuno-Histoquímica , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Mutação/genética , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-mdm2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328157

RESUMO

Large library docking can reveal unexpected chemotypes that complement the structures of biological targets. Seeking new agonists for the cannabinoid-1 receptor (CB1R), we docked 74 million tangible molecules, prioritizing 46 high ranking ones for de novo synthesis and testing. Nine were active by radioligand competition, a 20% hit-rate. Structure-based optimization of one of the most potent of these (Ki = 0.7 uM) led to '4042, a 1.9 nM ligand and a full CB1R agonist. A cryo-EM structure of the purified enantiomer of '4042 ('1350) in complex with CB1R-Gi1 confirmed its docked pose. The new agonist was strongly analgesic, with generally a 5-10-fold therapeutic window over sedation and catalepsy and no observable conditioned place preference. These findings suggest that new cannabinoid chemotypes may disentangle characteristic cannabinoid side-effects from their analgesia, supporting the further development of cannabinoids as pain therapeutics.

10.
Sci Adv ; 10(28): eadn0881, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996027

RESUMO

Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.


Assuntos
Células Matadoras Naturais , Mesotelina , Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Feminino , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Imunoterapia Adotiva/métodos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/terapia , Memória Imunológica , Domínios Proteicos
12.
Biochem J ; 433(2): 393-402, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21029048

RESUMO

BMP-2 (bone morphogenetic protein-2) promotes differentiation of osteoblast precursor cells to mature osteoblasts that form healthy bone. In the present study, we demonstrate a novel mechanism of BMP-2-induced osteoblast differentiation. The antioxidant NAC (N-acetyl-L-cysteine) and the flavoprotein enzyme NAD(P)H oxidase inhibitor DPI (diphenyleneiodonium) prevented BMP-2-stimulated alkaline phosphatase expression and mineralized bone nodule formation in mouse 2T3 pre-osteoblasts. BMP-2 elicited a rapid generation of ROS (reactive oxygen species) concomitant with increased activation of NAD(P)H oxidase. NAC and DPI inhibited BMP-2-induced ROS production and NAD(P)H oxidase activity respectively. NAD(P)H oxidases display structurally similar catalytic subunits (Nox1-5) with differential expression in various cells. We demonstrate that 2T3 pre-osteoblasts predominantly express the Nox4 isotype of NAD(P)H oxidase. To extend this finding, we tested the functional effects of Nox4. Adenovirus-mediated expression of dominant-negative Nox4 inhibited BMP-2-induced alkaline phosphatase expression. BMP-2 promotes expression of BMP-2 for maintenance of the osteoblast phenotype. NAC and DPI significantly blocked BMP-2-stimulated expression of BMP2 mRNA and protein due to a decrease in BMP2 gene transcription. Dominant-negative Nox4 also mimicked this effect of NAC and DPI. Our results provide the first evidence for a new signalling pathway linking BMP-2-stimulated Nox4-derived physiological ROS to BMP-2 expression and osteoblast differentiation.


Assuntos
Proteína Morfogenética Óssea 2/genética , Diferenciação Celular , NADPH Oxidases/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Camundongos , NADPH Oxidase 4 , RNA Mensageiro/genética
13.
Aging (Albany NY) ; 14(4): 1678-1690, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210368

RESUMO

Hexavalent chromium [Cr(VI)] pollution is a serious environmental problem, due to not only its toxicity but also carcinogenesis. Although studies reveal several features of Cr(VI)-induced carcinogenesis, the underlying mechanisms of how Cr(VI) orchestrates multiple mitogenic pathways to promote tumor initiation and progression remain not fully understood. Src/Ras and other growth-related pathways are shown to be key players in Cr(VI)-initiated tumor prone actions. The role of protein kinase C (PKC, an important signal transducer) in Cr(VI)-mediated carcinogenesis has not been thoroughly investigated. In this study, using human bronchial/lung epithelial cells and keratinocytes, we demonstrate that PKC activity is increased by transient or chronic Cr(VI) exposure, which plays no role in the activation of Src/Ras signaling and ROS upregulation by this metal toxin. PKC in chronic Cr(VI)-treated cells stabilizes Bcl-2 to mitigate doxorubicin (an anti-cancer drug)-mediated apoptosis. After the suppression of this kinase by GO6976 (a PKC inhibitor), the cells chronically exposed to Cr(VI) partially regain the sensitivity to doxorubicin. However, when co-suppressed PKC and Ras, the chronic Cr(VI)-treated cells become fully responsive to doxorubicin and are unable to be transformed. Taken together, our study provides a new insight into the mechanisms, in which PKC is an indispensable player and cooperates with other mitogenic pathways to achieve Cr(VI)-induced carcinogenesis as well as to establish drug resistance. The data also suggest that active PKC can serve as a potential biomarker for early detection of health damages by Cr(VI) and therapeutic target for developing new treatments for diseases caused by Cr(VI).


Assuntos
Transformação Celular Neoplásica , Cromo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Cromo/toxicidade , Doxorrubicina/efeitos adversos , Resistência a Medicamentos , Humanos
14.
Clin Cancer Res ; 14(21): 6855-66, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18980980

RESUMO

PURPOSE: The purpose of this study was to examine the molecular mechanisms by which sulforaphane enhances the therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in prostate cancer. EXPERIMENTAL DESIGN: Cell viability and apoptosis assays were done by XTT and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, respectively. Tumor-bearing mice were treated with vehicle, sulforaphane, TRAIL, and sulforaphane plus TRAIL. Markers of apoptosis, angiogenesis, and metastasis were measured by immunohistochemistry. RESULTS: Sulforaphane enhanced the therapeutic potential of TRAIL in PC-3 cells and sensitized TRAIL-resistant LNCaP cells. Sulforaphane-induced apoptosis in PC-3 cells correlated with the generation of intracellular reactive oxygen species (ROS), collapse of mitochondrial membrane potential, activation of caspase-3 and caspase-9, and up-regulation of DR4 and DR5. Sulforaphane induced the expression of Bax, Bak, Bim, and Noxa and inhibited the expression of Bcl-2, Bcl-X(L), and Mcl-1. The quenching of ROS generation with antioxidant N-acetyl-L-cysteine conferred significant protection against sulforaphane-induced ROS generation, mitochondrial membrane potential disruption, caspase-3 activation, and apoptosis. Sulforaphane inhibited growth of orthotopically implanted PC-3 tumors by inducing apoptosis and inhibiting proliferation and also enhanced the antitumor activity of TRAIL. Sulforaphane up-regulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and Bak and inhibited the activation of nuclear factor-kappaB P13K/AKT and MEK/ERK pathways in tumor tissues. The combination of sulforaphane and TRAIL was more effective in inhibiting markers of angiogenesis and metastasis and activating FOXO3a transcription factor than single agent alone. CONCLUSIONS: The ability of sulforaphane to inhibit tumor growth, metastasis, and angiogenesis and to enhance the therapeutic potential of TRAIL suggests that sulforaphane alone or in combination with TRAIL can be used for the management of prostate cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Neoplasias da Próstata/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Tiocianatos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Isotiocianatos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos , Tiocianatos/administração & dosagem
15.
Mol Cancer Ther ; 7(8): 2328-38, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18723480

RESUMO

Recent studies have shown that naturally occurring compounds can enhance the efficacy of chemotherapeutic drugs. The objectives of this study were to investigate the molecular mechanisms by which diallyl trisulfide (DATS) enhanced the therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in prostate cancer cells in vitro and on orthotopically transplanted PC-3 prostate carcinoma in nude mice. DATS inhibited cell viability and colony formation and induced apoptosis in PC-3 and LNCaP cells. DATS enhanced the apoptosis-inducing potential of TRAIL in PC-3 cells and sensitized TRAIL-resistant LNCaP cells. Dominant-negative FADD inhibited the synergistic interaction between DATS and TRAIL on apoptosis. DATS induced the expression of DR4, DR5, Bax, Bak, Bim, Noxa, and PUMA and inhibited expression of Mcl-1, Bcl-2, Bcl-X(L), survivin, XIAP, cIAP1, and cIAP2. Oral administration of DATS significantly inhibited growth of orthotopically implanted prostate carcinoma in BALB/c nude mice compared with the control group, without causing weight loss. Cotreatment of mice with DATS and TRAIL was more effective in inhibiting prostate tumor growth and inducing DR4 and DR5 expression, caspase-8 activity, and apoptosis than either agent alone. DATS inhibited angiogenesis (as measured by CD31-positive and factor VIII-positive blood vessels and hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-6 expression) and metastasis [matrix metalloproteinase (MMP)-2, MMP-7, MMP-9, and MT-1 MMP expression], which were correlated with inhibition in AKT and nuclear factor-kappaB activation. The combination of DATS and TRAIL was more effective in inhibiting markers of angiogenesis and metastasis than either agent alone. These data suggest that DATS can be combined with TRAIL for the prevention and/or treatment of prostate cancer.


Assuntos
Compostos Alílicos/farmacologia , Divisão Celular/fisiologia , Neoplasias da Próstata/patologia , Sulfetos/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Animais , Western Blotting , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Neovascularização Patológica , Neoplasias da Próstata/irrigação sanguínea
16.
Genes Cancer ; 10(1-2): 39-51, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30899418

RESUMO

Environmental pollution is a big challenge for human survival. Arsenic compounds are well-known biohazard, the exposure of which is closely linked to onsets of various human diseases, particularly cancers. Upon chronically exposing to arsenic compounds, genomic integrity is often disrupted, leading to tumor development. However, the underlying mechanisms by which chronic, low dose arsenic exposure targets genetic stability to initiate carcinogenesis still remain not fully understood. In this study, human lung epithelial BEAS-2B cells and keratinocytes were treated with 0.5 µM of sodium arsenite for one month (designated as BEAS-2B-SA cells or keratinocytes-SA), and its effect on cell cycle responses was analyzed. After being arrested in mitotic phase of the cell cycle by nocodazole treatment, BEAS-2B-SA cells or keratinocytes-SA were delayed to enter next cytokinesis. The lagging exit of the cells from mitosis was accompanied by a sustained Plk1 phosphorylation, which led to a persistent activation of the mitotic regulators BubR1 and Cdc27. As the result, cyclin B1 (clnB1) degradation was attenuated. BEAS-2B-SA cells or keratinocytes-SA also expressed a constitutively active Akt. The cytogenetic analysis showed an increased numbers of aneuploidy in these cells. The suppression of Akt reversed the aberrant expressions of the mitotic regulators, delay of mitotic exit as well as chromosomal aberrations. Our findings suggest that a long-term exposure to low dose sodium arsenite aberrantly retains the catenation of mitosis, which facilitates establishing genetic instability and predisposes the cells to tumorigenesis.

17.
Mol Cancer ; 7: 16, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18226269

RESUMO

BACKGROUND: We have recently shown that curcumin (a diferuloylmethane, the yellow pigment in turmeric) enhances apoptosis-inducing potential of TRAIL in prostate cancer PC-3 cells, and sensitizes TRAIL-resistant LNCaP cells in vitro through multiple mechanisms. The objectives of this study were to investigate the molecular mechanisms by which curcumin sensitized TRAIL-resistant LNCaP xenografts in vivo. METHODS: Prostate cancer TRAIL-resistant LNCaP cells were implanted in Balb c nude mice to examine the effects of curcumin and/or TRAIL on tumor growth and genes related to apoptosis, metastasis and angiogenesis. RESULTS: Curcumin inhibited growth of LNCaP xenografts in nude mice by inducing apoptosis (TUNEL staining) and inhibiting proliferation (PCNA and Ki67 staining), and sensitized these tumors to undergo apoptosis by TRAIL. In xenogrfated tumors, curcumin upregulated the expression of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax, Bak, p21/WAF1, and p27/KIP1, and inhibited the activation of NFkappaB and its gene products such as cyclin D1, VEGF, uPA, MMP-2, MMP-9, Bcl-2 and Bcl-XL. The regulation of death receptors and members of Bcl-2 family, and inactivation of NFkappaB may sensitize TRAIL-resistant LNCaP xenografts. Curcumin also inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells in mice. CONCLUSION: The ability of curcumin to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that curcumin alone or in combination with TRAIL can be used for prostate cancer prevention and/or therapy.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metástase Neoplásica , Neovascularização Patológica/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interleucina-2/metabolismo , Camundongos , Camundongos Nus , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Morte Celular/metabolismo
18.
Front Biosci ; 13: 440-52, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981559

RESUMO

We have shown that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, inhibits growth and induces apoptosis in human pancreatic cancer cells. However, the preclinical potential of EGCG in a suitable mouse model has not been examined. In this study, we examined the molecular mechanisms by which EGCG inhibited growth, invasion, metastasis and angiogenesis of human pancreatic cancer cells in a xenograft model system. EGCG inhibited viability, capillary tube formation and migration of HUVEC, and these effects were further enhanced in the presence of an ERK inhibitor. In vivo, AsPC-1 xenografted tumors treated with EGCG showed significant reduction in volume, proliferation (Ki-67 and PCNA staining), angiogenesis (vWF, VEGF and CD31) and metastasis (MMP-2, MMP-7, MMP-9 and MMP-12) and induction in apoptosis (TUNEL), caspase-3 activity and growth arrest (p21/WAF1). EGCG also inhibited circulating endothelial growth factor receptor 2 (VEGF-R2) positive endothelial cells derived from xenografted mice. Tumor samples from EGCG treated mice showed significantly reduced ERK activity, and enhanced p38 and JNK activities. Overall, our data suggest that EGCG inhibits pancreatic cancer growth, invasion, metastasis and angiogenesis, and thus could be used for the management of pancreatic cancer prevention and treatment.


Assuntos
Catequina/análogos & derivados , Neovascularização Patológica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Animais , Catequina/farmacologia , Proliferação de Células , Endotélio Vascular/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias
20.
Oncotarget ; 9(67): 32736-32750, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30214681

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant disease with 5-year survival rate of less than 6%. Activating mutations of Kras (mu-Kras) are often detected in most of PDAC patients. Although it has been known that oncogenic Kras is the driver of pancreatic cancer initiation and development, the underlying mechanisms by which mu-Kras promotes PDAC remain poorly understood. Here, we identify that PKCι is one of the crucial factors for supporting the survival of pancreatic cancer cells expressing mu-Kras. Our study demonstrates that after the knockdown of PKCι, the expression of the transcriptional co-activator YAP1 is decreased, which hinders the expression of the downstream target gene Mcl-1, and subsequently sensitizes pancreatic cancer MiaPaCa and PANC-1 cells experssing mu-Kras to apoptosis. In comparison, the suppression of PKCι has little impact on the viability of non-neoplastic pancreatic HPDE6-C7 cells. Moreover, the transient overexpression of oncogenic Kras in HPDE6-C7 elevates the expression of PKCι and YAP1 concomitantly. The upregulated YAP1 in HPDE6-C7/ mu-Kras cells is abolished once PKCι is suppressed, suggesting the linear relationship among mu-Kras, PKCι and YAP1. This phenomenon is further proven by the co-upregulation of PKCι and YAP1 in HPDE6-C7 cells stably transfected with mu-Kras. Taken together, our findings suggest that PKCι acts through promoting YAP1 function to promote the survival of pancreatic cancer cells expressing mu-Kras. It appears that targeting PKCι-YAP1 signaling is a feasible strategy for developing new therapeutics for treating pancreatic cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA