Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sensors (Basel) ; 21(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668303

RESUMO

Partially aggregated Rhodamine 6G (R6G) dye is used as a lights-on temperature sensor to analyze the spatiotemporal heating of aluminum nanoparticles (Al NPs) embedded within a tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride (THV) fluoropolymer matrix. The embedded Al NPs were photothermally heated using an IR laser, and the fluorescent intensity of the embedded dye was monitored in real time using an optical microscope. A plasmonic grating substrate enhanced the florescence intensity of the dye while increasing the optical resolution and heating rate of Al NPs. The fluorescence intensity was converted to temperature maps via controlled calibration. The experimental temperature profiles were used to determine the Al NP heat generation rate. Partially aggregated R6G dyes, combined with the optical benefits of a plasmonic grating, offered robust temperature sensing with sub-micron spatial resolution and temperature resolution on the order of 0.2 °C.

2.
Nanotechnology ; 30(4): 045703, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30465550

RESUMO

Surface reactions between heated aluminum nanoparticles (Al NPs) and thin α-MoO3 sheets are investigated. Localized photothermal heating on Al NP clusters is provided by a Raman spectrometer laser, while enhanced heating rates and imaging resolution are enabled by the use of a plasmonic grating substrate. Prominent linear reaction zones extending from Al NPs in the 〈001〉 crystal direction are observed on the surface of the host MoO3 sheets after heating. Raman spectroscopy and x-ray diffraction indicate that α-Al2O3 is generated within these extended reacted regions, while AFM and SEM indicate that the topology of the reaction regions are indistinguishable from the MoO3 host. We hypothesize that these Al2O3 zones are formed by surface diffusion and subsequent sub-surface adsorption of heated Al adatoms along the low-energy 〈001〉 MoO3 direction. Understanding and controlling these reaction mechanisms could lead to enhanced combustion of Al/MoO3 nanothermite systems.

3.
Nanotechnology ; 29(39): 395501, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-29956679

RESUMO

In situ dynamic temperature mapping of photothermally heated aluminum nanoparticles (Al NPs) embedded in a fluoropolymer (THV) is achieved using fluorescent dye (rhodamine 6G). A plasmonic grating substrate enhances the dye fluorescence intensity by a factor of seven over a glass substrate, to enable image capture rates of 500 frames per second. Further, the fluorescence intensity is linearly related to temperature and reversible. Photothermal heating of embedded Al NPs using a 2380 W cm-2 incident flux produced an Al NP heating rate of 1.2 × 104 °C s-1. Localized Al NP motion was also observed and attributed to thermal expansion and melting of the polymer. Multiphysics simulation provided agreement with experimental observations, bolstering confidence in the technique. The plasmonic grating platforms were shown to significantly improve both fluorescence intensity and the photothermal heating of Al compared to glass substrates, opening a new path for fast and high-resolution in situ temperature mapping.

4.
Nanotechnology ; 28(2): 025302, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-27905323

RESUMO

Classical methods for enhancing the electromagnetic field from substrates for spectroscopic applications, such as surface-enhanced Raman spectroscopy (SERS), have involved the generation of hotspots through directed self-assembly of nanoparticles or by patterning nanoscale features using expensive nanolithography techniques. A novel large-area, cost-effective soft lithographic technique involving glancing angle deposition (GLAD) of silver on polymer gratings is reported here. This method produces hierarchical nanostructures with high enhancement factors capable of analyzing single-molecule SERS. The uniform ordered and patterned nanostructures provide extraordinary field enhancements that serve as excitatory hotspots and are herein interrogated by SERS. The high spatial homogeneity of the Raman signal and signal enhancement over a large area from a self-assembled monolayer (SAM) of 2-naphthalenethiol demonstrated the uniformity of the hotspots. The enhancement was shown to have a critical dependence on the underlying nanostructure via the surface energy landscape and GLAD angles for a fixed deposition thickness, as evidenced by atomic force microscopy and scanning electron microscopy surface analysis of the substrate. The nanostructured surface leads to an extremely concentrated electromagnetic field at sharp nanoscale peaks, here referred to as 'nano-protrusions', due to the coupling of surface plasmon resonance (SPR) with localized SPR. These nano-protrusions act as hotspots which provide Raman enhancement factors as high as 108 over a comparable SAM on silver. Comparison of our substrate with the commercial substrate Klarite™ shows higher signal enhancement and minimal signal variation with hotspot spatial distribution. By using the proper plasmon resonance angle corresponding to the laser source wavelength, further enhancement in signal intensity can be achieved. Single-molecule Raman spectra for rhodamine 6G are obtained from the best SERS substrate (a GLAD angle of 60°). The single-molecule spectrum is invariant over the substrate, due to the patterned ordered nanostructures (nano-protrusions).

5.
Nanotechnology ; 26(35): 355204, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26267227

RESUMO

Single-electron transistors incorporating single ∼1 nm gold nanocluster (AuNCs) and pentacene as a complex charge transport system have been used to study the quantum Coulomb blockade and its single electron tunnelling behaviour at room temperature (RT) (300 K). Monodisperse ultra-small (0.86 ± 0.30 nm) AuNCs were deposited by the tilted-target sputtering technique into 12 nm nanogaps fabricated by high-resolution e-beam lithography. Tunnelling resistance was modulated to ∼10(9) Ω by addition of a pentacene layer, allowing clear observation of quantum staircases and Coulomb oscillations with on/off current modulation ratio of ∼100 in RT current-voltage measurements. The electron addition energy and average quantized energy level spacing were found to be 282 and 80.4 meV, respectively, which are significantly larger than the thermal energy at 300 K (25.9 meV).

6.
Langmuir ; 30(22): 6556-64, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24829064

RESUMO

Exploiting the functionalization chemistry of graphene, long-range electrostatic and short-range covalent interactions were harnessed to produce multifunctional energetic materials through hierarchical self-assembly of nanoscale oxidizer and fuel into highly reactive macrostructures. Specifically, we report a methodology for directing the self-assembly of Al and Bi2O3 nanoparticles on functionalized graphene sheets (FGS) leading to the formation of nanocomposite structures in a colloidal suspension phase that ultimately condense into ultradense macrostructures. The mechanisms driving self-assembly were studied using a host of characterization techniques including zeta potential measurements, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), particle size analysis, micro-Raman spectroscopy, and electron microscopy. A remarkable enhancement in energy release from 739 ± 18 to 1421 ± 12 J/g was experimentally measured for the FGS self-assembled nanocomposites.

7.
Biosensors (Basel) ; 14(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38920592

RESUMO

The scope of this study was to apply advances in materials science, specifically the use of organosilicate nanoparticles as a high surface area platform for passive sampling of chemicals or pre-concentration for active sensing in multiple-phase complex environmental media. We have developed a novel nanoporous organosilicate (NPO) film as an extraction phase and proof of concept for application in adsorbing hydrophobic compounds in water and sediment. We characterized the NPO film properties and provided optimization for synthesis and coatings in order to apply the technology in environmental media. NPO films in this study had a very high surface area, up to 1325 m2/g due to the high level of mesoporosity in the film. The potential application of the NPO film as a sorbent phase for sensors or passive samplers was evaluated using a model hydrophobic chemical, polychlorinated biphenyls (PCB), in water and sediment. Sorption of PCB to this porous high surface area nanoparticle platform was highly correlated with the bioavailable fraction of PCB measured using whole sediment chemistry, porewater chemistry determined by solid-phase microextraction fiber methods, and the Lumbriculus variegatus bioaccumulation bioassay. The surface-modified NPO films in this study were found to highly sorb chemicals with a log octanol-water partition coefficient (Kow) greater than four; however, surface modification of these particles would be required for application to other chemicals.


Assuntos
Sedimentos Geológicos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , Nanopartículas/química , Água/química , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Compostos de Organossilício/química , Adsorção , Propriedades de Superfície
8.
Rep Prog Phys ; 76(6): 066501, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23722189

RESUMO

Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle-polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly.


Assuntos
Biologia , Química , Nanoestruturas/química , Nanotecnologia/métodos , Humanos , Fenômenos Físicos
9.
BMC Biotechnol ; 13: 30, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23536965

RESUMO

BACKGROUND: Biofilms occur on a wide variety of surfaces including metals, ceramics, glass etc. and often leads to accumulation of large number of various microorganisms on the surfaces. This biofilm growth is highly undesirable in most cases as biofilms can cause degradation of the instruments and its performance along with contamination of the samples being processed in those systems. The current "offline" biofilm removal methods are effective but labor intensive and generates waste streams that are toxic to be directly disposed. We present here a novel process that uses nano-energetic materials to eliminate biofilms in < 1 second. The process involves spray-coating a thin layer of nano-energetic material on top of the biofilm, allowing it to dry, and igniting the dried coating to incinerate the biofilm. RESULTS: The nanoenergetic material is a mixture of aluminum (Al) nanoparticles dispersed in a THV-220A (fluoropolymer oxidizer) matrix. Upon ignition, the Al nanoparticles react with THV-220A exothermically, producing high temperatures (>2500 K) for an extremely brief period (~100 ms) that destroys the biofilm underneath. However, since the total amount of heat produced is low (~0.1 kJ/cm2), the underlying surface remains undamaged. Surfaces with biofilms of Pseudomonas aeruginosa initially harboring ~ 10(7) CFU of bacteria /cm2 displayed final counts of less than 5 CFU/cm2 after being subjected to our process. The byproducts of the process consist only of washable carbonaceous residue and gases, making this process potentially inexpensive due to low toxic-waste disposal costs. CONCLUSIONS: This novel method of biofilm removal is currently in the early stage of development. However, it has potential to be used in offline biofilm elimination as a rapid, easy and environmentally friendly method.


Assuntos
Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Alumínio/química , Nanopartículas Metálicas/química , Polímeros/química , Pseudomonas aeruginosa/fisiologia
10.
Nanotechnology ; 24(20): 205602, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23609435

RESUMO

This paper describes a tilted-target RF magnetron sputter deposition system to grow nanoparticles in a controlled way. With detailed characterization of ultra-high density (up to 1.1 × 10¹³ cm⁻²) and ultra-small size Pt nanoparticles (0.5-2 nm), it explains their growth and crystalline properties on amorphous Al2O3 thin films. It is shown that Pt nanoparticle size and number density can be precisely engineered by varying selected experimental parameters such as target angle, sputtering power and time of deposition to control the energy of the metal atoms in the deposition flux. Based on rate equation modelling of nanoparticle growth, three distinct growth regimes, namely nucleation dependent, coalescence dependent and agglomeration dependent regimes, were observed. The correlation between different nanoparticle growth regimes and the consequent crystal structure transformation, non-crystalline clusters → single crystalline nanoparticles → polycrystalline islands, is also discussed.

11.
Nanotechnology ; 23(17): 175601, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22481044

RESUMO

We report ultrabright, photostable, sub-25 nm nanoparticle agglomerates (suprananoparticles) assembled from a few hundred 3.3 ± 0.9 nm units, each hosting on average a single rhodamine 6G (Rh6G) dye molecule encased in a thin organosilicate cage. These individual Rh6G-doped nanoparticle (DOSNP) units consist of a hydrophobic core containing the dye and an ultrathin, conformal silicate shell modified by CO(2) plasma to confer a beneficial 'cage effect' as well as surface hydrophilicity. The isolation of the dye within individual DOSNP units in the final 22 ± 5 nm agglomerate avoids dimerization and related spontaneous molecular interactions that otherwise lead to self-quenching in closely co-localized fluorophores. The resulting suprananoparticles are over 200 times brighter than the free Rh6G molecules in the same volume. There is no observable dye leaching, and the labels are 20-fold more resistant to photobleaching than free Rh6G in solution. We demonstrate the attractive features of DOSNPs as labels in bioimaging applications.


Assuntos
Corantes Fluorescentes/química , Nanopartículas/química , Compostos de Organossilício/química , Rodaminas/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Fotodegradação , Espectrometria de Fluorescência
12.
PLoS One ; 17(10): e0275658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36282804

RESUMO

BACKGROUND: Tuberculosis is one of the top ten causes of death globally and the leading cause of death from a single infectious agent. Eradicating the Tuberculosis epidemic by 2030 is one of the top United Nations Sustainable Development Goals. Early diagnosis is essential to achieving this goal because it improves individual prognosis and reduces transmission rates of asymptomatic infected. We aim to support this goal by developing rapid and sensitive diagnostics using machine learning algorithms to minimize the need for expert intervention. METHODS AND FINDINGS: A single molecule fluorescence immunosorbent assay was used to detect Tuberculosis biomarker lipoarabinomannan from a set of twenty clinical patient samples and a control set of spiked human urine. Tuberculosis status was separately confirmed by GeneXpert MTB/RIF and cell culture. Two machine learning algorithms, an automatic and a semiautomatic model, were developed and trained by the calibrated lipoarabinomannan titration assay data and then tested against the ground truth patient data. The semiautomatic model differed from the automatic model by an expert review step in the former, which calibrated the lower threshold to determine single molecules from background noise. The semiautomatic model was found to provide 88.89% clinical sensitivity, while the automatic model resulted in 77.78% clinical sensitivity. CONCLUSIONS: The semiautomatic model outperformed the automatic model in clinical sensitivity as a result of the expert intervention applied during calibration and both models vastly outperformed manual expert counting in terms of time-to-detection and completion of analysis. Meanwhile, the clinical sensitivity of the automatic model could be improved significantly with a larger training dataset. In short, semiautomatic, and automatic Gaussian Mixture Models have a place in supporting rapid detection of Tuberculosis in resource-limited settings without sacrificing clinical sensitivity.


Assuntos
Técnicas Biossensoriais , Mycobacterium tuberculosis , Tuberculose , Humanos , Rifampina , Imunoadsorventes , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Aprendizado de Máquina , Biomarcadores , Escarro
13.
Nanotechnology ; 20(42): 425602, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19779225

RESUMO

Nanoporous materials have become indispensable in many fields ranging from photonics, catalysis and semiconductor processing to biosensor infrastructure. Rapid and energy efficient process fabrication of these materials is, however, nontrivial. In this communication, we describe a simple method for the rapid fabrication of these materials from colloidal dispersions of Polymethyl Silsesquioxane nanoparticles. Nanoparticle-polymer composites above the decomposition temperature of the polymer are examined and the entropic gain experienced by the nanoparticles in this rubric is harnessed to fabricate novel highly porous films composed of nanoparticles. Optically smooth, hydrophobic films with low refractive indices (as low as 1.048) and high surface areas (as high as 1325 m(2) g(-1)) have been achieved with this approach. In this communication we address the behavior of such systems that are both temperature and substrate surface energy dependent. The method is applicable, in principle, to a variety of nanoparticle-polymer systems to fabricate custom nanoporous materials.

14.
ACS Omega ; 4(5): 8512-8521, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459941

RESUMO

We report a simple device that generates synchronized mechanical and electrical pressure waves for carrying out bacterial transformation. The mechanical pressure waves are produced by igniting a confined nanoenergetic composite material that provides ultrahigh pressure. Further, this device has an arrangement through which a synchronized electric field (of a time-varying nature) is initiated at a delay of ≈85 µs at the full width half-maxima point of the pressure pulse. The pressure waves so generated are incident to a thin aluminum-polydimethylsiloxane membrane that partitions the ignition chamber from the column of the mixture containing bacterial cells (Escherichia coli BL21) and 4 kb transforming DNA. A combination of mechanical and electrical pressure pulse created through the above arrangement ensures that the transforming DNA transports across the cell membrane into the cell, leading to a transformation event. This unique device has been successfully operated for efficient gene (∼4 kb) transfer into cells. The transformation efficacy of this device is found comparable to the other standard methods and protocols for carrying out the transformation.

15.
PLoS One ; 14(3): e0214161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30913250

RESUMO

BACKGROUND: Timely diagnosis of tuberculosis disease is critical for positive patient outcomes, yet potentially millions go undiagnosed or unreported each year. Sputum is widely used as the testing input, but limited by its complexity, heterogeneity, and sourcing problems. Finding methods to interrogate noninvasive, non-sputum clinical specimens is indispensable to improving access to tuberculosis diagnosis and care. In this work, economical plasmonic gratings were used to analyze tuberculosis biomarker lipoarabinomannan (LAM) from clinical urine samples by single molecule fluorescence assay (FLISA) and compared with gold standard sputum GeneXpert MTB/ RIF, culture, and reference ELISA testing results. METHODS AND FINDINGS: In this study, twenty sputum and urine sample sets were selected retrospectively from a repository of HIV-negative patient samples collected before initiation of anti-tuberculosis therapy. GeneXpert MTB/RIF and culture testing of patient sputum confirmed the presence or absence of pulmonary tuberculosis while all patient urines were reference ELISA LAM-negative. Plasmonic gratings produced by low-cost soft lithography were bound with anti-LAM capture antibody, incubated with patient urine samples, and biotinylated detection antibody. Fluorescently labeled streptavidin revealed single molecule emission by epifluorescence microscope. Using a 1 fg/mL baseline for limit of detection, single molecule FLISA demonstrated good qualitative agreement with gold standard tests on 19 of 20 patients, including accurately predicting the gold-standard-negative patients, while one gold-standard-positive patient produced no observable LAM in urine. CONCLUSIONS: Single molecule FLISA by plasmonic grating demonstrated the ability to quantify tuberculosis LAM from complex urine samples of patients from a high endemic setting with negligible interference from the complex media itself. Moreover, agreement with patient diagnoses by gold standard testing suggests that single molecule FLISA could be used as a highly sensitive test to diagnose tuberculosis noninvasively.


Assuntos
Técnicas Biossensoriais , Soronegatividade para HIV , HIV-1 , Lipopolissacarídeos/urina , Tuberculose/urina , Adulto , Feminino , Humanos , Pessoa de Meia-Idade
16.
ACS Appl Mater Interfaces ; 10(1): 427-436, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29210564

RESUMO

Plasmonic gratings facilitate a robust in situ diagnostic platform for photothermal combustion of nanoenergetic composite thin films using an optical microscope and a high-speed camera. Aluminum nanoparticles (Al NPs) embedded in a fluoropolymer oxidizer are cast onto a plasmonic grating microchip and ignited using a low-power laser. The plasmonic grating enhances both spatial resolution and sufficient photothermal coupling to combust small Al NP clusters, initiating localized flames as small as 600 nm in size. Two-color pyrometry obtained from a high-speed color camera indicates an average flame temperature of 3900 K. Scattering measurements using polarized light microscopy enabled precise identification of individual Al NPs over a large field of view, leading to 3D reconstruction of combustion events.

17.
ACS Omega ; 2(5): 2041-2045, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457558

RESUMO

The ability to image single molecules (SM) has been the dream of scientists for centuries, and because of the substantial recent advances in microscopy, individual fluorescent molecules can now be observed on a regular basis. However, the development of such imaging systems was not without dilemmas, such as the detection and separation of individual fluorescence emissions. One method to solve this problem utilized surface plasmon resonance (SPR) to enhance the emission intensity of SMs. Although enhancing the SM emission intensity has yielded promising results, this method does not fully utilize the unique plasmonic properties that could vastly improve the SM imaging capabilities. Here, we use SPR excitation as well as surface plasmon-coupled emission from a high-definition digital versatile disc grating structure to image and identify different fluorophores using the angular emission of individual molecules. Our results have important implications for research in multiplexed SM spectroscopy and SM fluorescence imaging.

18.
Sci Rep ; 6: 25234, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121605

RESUMO

We report metal/p-Si contact barrier modification through the introduction of either "isolated" or "nonisolated" tilted-target-sputtered sub-2 nm platinum nanoparticles (Pt NPs) in combination with either a 0.98 nm Atomic Layer Deposited Al2O3 or a 1.6 nm chemically grown SiO2 dielectric layer, or both. Here, we study the role of these Pt NP's size dependent properties, i.e., the Pt NP-metal surface dipole, the Coulomb blockade and quantum confinement effect in determining the degree of Fermi level depinning observed at the studied metal/p-Si interfaces. By varying only the embedded Pt NP size and its areal density, the nature of the contact can also be modulated to be either Schottky or Ohmic upon utilizing the same gate metal. 0.74 nm Pt NPs with an areal density of 1.1 × 10(13) cm(-2) show ~382 times higher current densities compared to the control sample embedded with similarly sized Pt NPs with ~1.6 times lower areal densities. We further demonstrate that both Schottky (Ti/p-Si) and poor Ohmic (Au/p-Si) contact can be modulated into a good Ohmic contact with current density of 18.7 ± 0.6 A/cm(2) and 10.4 ± 0.4 A/cm(2), respectively, showing ~18 and ~30 times improvement. A perfect forward/reverse current ratio of 1.041 is achieved for these low doped p-Si samples.

19.
Artigo em Inglês | MEDLINE | ID: mdl-29942373

RESUMO

We introduce nanogap-embedded silver plasmonic gratings for single-molecule (SM) visualization using an epifluorescence microscope. This silver plasmonic platform was fabricated by a cost-effective nano-imprint lithography technique, using an HD DVD template. DNA/ RNA duplex molecules tagged with Cy3/Cy5 fluorophores were immobilized on SiO2-capped silver gratings. Light was coupled to the gratings at particular wavelengths and incident angles to form surface plasmons. The SM fluorescence intensity of the fluorophores at the nanogaps showed approximately a 100-fold mean enhancement with respect to the fluorophores observed on quartz slides using an epifluorescence microscope. This high level of enhancement was due to the concentration of surface plasmons at the nanogaps. When nanogaps imaged with epifluorescence mode were compared to quartz imaged using total internal reflection fluorescence (TIRF) microscopy, more than a 30-fold mean enhancement was obtained. Due to the SM fluorescence enhancement of plasmonic gratings and the correspondingly high emission intensity, the required laser power can be reduced, resulting in a prolonged detection time prior to photobleaching. This simple platform was able to perform SM studies with a low-cost epifluorescence apparatus, instead of the more expensive TIRF or confocal microscopes, which would enable SM analysis to take place in most scientific laboratories.

20.
Artigo em Inglês | MEDLINE | ID: mdl-24867883

RESUMO

Bacterial colonization and biofilm formation on an orthopedic implant surface is one of the worst possible outcomes of orthopedic intervention in terms of both patient prognosis and healthcare costs. Making the problem even more vexing is the fact that infections are often caused by events beyond the control of the operating surgeon and may manifest weeks to months after the initial surgery. Herein, we review the costs and consequences of implant infection as well as the methods of prevention and management. In particular, we focus on coatings and other forms of implant surface modification in a manner that imparts some antimicrobial benefit to the implant device. Such coatings can be classified generally based on their mode of action: surface adhesion prevention, bactericidal, antimicrobial-eluting, osseointegration promotion, and combinations of the above. Despite several advances in the efficacy of these antimicrobial methods, a remaining major challenge is ensuring retention of the antimicrobial activity over a period of months to years postoperation, an issue that has so far been inadequately addressed. Finally, we provide an overview of additional figures of merit that will determine whether a given antimicrobial surface modification warrants adoption for clinical use.


Assuntos
Anti-Infecciosos , Materiais Revestidos Biocompatíveis , Próteses e Implantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA