Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 14(11): 6097-103, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25354234

RESUMO

The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.


Assuntos
Grafite/química , Hidrocarbonetos/química , Nanopartículas Metálicas/química , Óxidos/química , Energia Solar , Catálise , Luz , Nanopartículas Metálicas/ultraestrutura , Oxirredução , Processos Fotoquímicos
2.
Small Methods ; 8(1): e2300710, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997223

RESUMO

An atmospheric-pressure plasma system is developed and is used to treat carbon nanotube assemblies, producing a hybrid carbon-zinc structure. This system is integrated into a floating-catalyst chemical vapor deposition furnace used for the synthesis of macroscopic assemblies of carbon nanotubes to allow for the in-line, continuous, and single-step production of nano-composite materials. Material is deposited from a sacrificial zinc wire in the form of nanoparticles and can coat the surface of the individual carbon nanotubes as they form. Additionally, it is found that the deposited materials penetrate further into the carbon nanotube matrix than a comparable post-synthesis deposition, improving the uniformity of the material through the thickness. Thus, a single-step metal-based coating and carbon nanotube synthesis process which can form the basis of production scale manufacturing of metal-carbon nanotube composite materials with an atmospheric-pressure plasma system are demonstrated.

3.
ACS Appl Mater Interfaces ; 16(10): 12339-12352, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38425008

RESUMO

Progress in electrochemical water-splitting devices as future renewable and clean energy systems requires the development of electrodes composed of efficient and earth-abundant bifunctional electrocatalysts. This study reveals a novel flexible and bifunctional electrode (NiO@CNTR) by hybridizing macroscopically assembled carbon nanotube ribbons (CNTRs) and atmospheric plasma-synthesized NiO quantum dots (QDs) with varied loadings to demonstrate bifunctional electrocatalytic activity for stable and efficient overall water-splitting (OWS) applications. Comparative studies on the effect of different electrolytes, e.g., acid and alkaline, reveal a strong preference for alkaline electrolytes for the developed NiO@CNTR electrode, suggesting its bifunctionality for both HER and OER activities. Our proposed NiO@CNTR electrode demonstrates significantly enhanced overall catalytic performance in a two-electrode alkaline electrolyzer cell configuration by assembling the same electrode materials as both the anode and the cathode, with a remarkable long-standing stability retaining ∼100% of the initial current after a 100 h long OWS run, which is attributed to the "synergistic coupling" between NiO QD catalysts and the CNTR matrix. Interestingly, the developed electrode exhibits a cell potential (E10) of only 1.81 V with significantly low NiO QD loading (83 µg/cm2) compared to other catalyst loading values reported in the literature. This study demonstrates a potential class of carbon-based electrodes with single-metal-based bifunctional catalysts that opens up a cost-effective and large-scale pathway for further development of catalysts and their loading engineering suitable for alkaline-based OWS applications and green hydrogen generation.

4.
ACS Omega ; 8(27): 24406-24417, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457444

RESUMO

Poor thermal conductivity in the through-thickness direction is a critical limitation in the performance of carbon fiber-reinforced polymer (CFRP) composites over a broad range of applications in the aviation industry, where heat dissipation is required (e.g., battery packs, electronic housing, and heat spreaders). In this work, it is demonstrated for the first time that a hierarchical network of vertically oriented graphene nanoflakes (GNFs), with nanoconfined silicon carbide (SiC) nanocrystals, self-assembled on carbon fibers (CFs) can provide significant improvement to the thermal conductivity (TC) of CFRPs in the through-thickness direction. The vertically aligned SiC/GNF heterostructures were grown directly on CFs for the first time by single-step plasma-enhanced chemical vapor deposition (PECVD) employing tetramethylsilane (TMS) and methane (CH4) gases at temperatures of 800 and 950 °C. At the deposition temperature of 950 °C, the controlled introduction of SiC/GNF heterostructures induced a 56% improvement in through-thickness TC over the bare CFRP counterparts while simultaneously preserving the tensile strength. The increase in thermal conductivity is accomplished by SiC nanocrystals, which serve as linkage thermal conducting paths between the vertical graphene layers, further enhancing the smooth transmission of phonons in the vertical direction. The work demonstrates for the first time the unique potential of novel SiC/GNF heterostructures for attaining strong and thermally conductive multifunctional CFRPs.

5.
Talanta ; 241: 123233, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074681

RESUMO

Paper-based electrodes modified with molybdenum disulfide (MoS2) in the form of bulk crystals or exfoliated nanosheets were developed and used as a biosensing platform for the impedimetric detection of miRNAs (miRNA-155 and miRNA-21) related to early diagnosis of lung cancer. For this purpose, MoS2 crystals or nanosheets were used for the modification of the working electrode area of paper-based platform for the first time in this study. The proposed assay offers sensitive and selective detection of microRNAs by electrochemical impedance spectroscopy (EIS) technique. The entire assay, both the electrode modification and the miRNA detection being completed in 30 min and a single sample droplet (5 µL) was enough to cover working electrode area which enabled analysis in low sample volumes. The limits of detection (LOD) for miRNA-21 and miRNA-155 were calculated both in buffer and fetal bovine serum media. It is found that the LOD is varying between 1 and 200 ng/mL. In comparison to nanosheets, a larger electroactive surface area was obtained with bulk MoS2 resulting in lower LOD values on miRNA detection. The paper-based electrodes showed high specificity towards their target sequences. Moreover, they effectively discriminated single base mismatched non-target sequences. The advantages of these MoS2 paper based electrodes include high sensitivity, and low-cost provide great potential for improved monitoring of miRNA biomarkers even in artificial serum media.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Biomarcadores , Técnicas Biossensoriais/métodos , Dissulfetos/química , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , MicroRNAs/análise , Molibdênio/química
6.
Anal Chem ; 83(6): 1938-43, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21351780

RESUMO

In this study, we have successfully demonstrated that a GaN nanowire (GaNNW) based extended-gate field-effect-transistor (EGFET) biosensor is capable of specific DNA sequence identification under label-free in situ conditions. Our approach shows excellent integration of the wide bandgap semiconducting nature of GaN, surface-sensitivity of the NW-structure, and high transducing performance of the EGFET-design. The simple sensor-architecture, by direct assembly of as-synthesized GaNNWs with a commercial FET device, can achieve an ultrahigh detection limit below attomolar level concentrations: about 3 orders of magnitude higher in resolution than that of other FET-based DNA-sensors. Comparative in situ studies on mismatches ("hotspot" mutations related to human p53 tumor-suppressor gene) and complementary targets reveal excellent selectivity and specificity of the sensor, even in the presence of noncomplementary DNA strands, suggesting the potential pragmatic application in complex clinical samples. In comparison with GaN thin film, NW-based EGFET exhibits excellent performance with about 2 orders higher sensitivity, over a wide detection range, 10(-19)-10(-6) M, reaching about a 6-orders lower detection limit. Investigations illustrate the unique and distinguished feature of nanomaterials. Detailed studies indicate a positive effect of energy band alignment at the biomaterials-semiconductor hybrid interface influencing the effective capacitance and carrier-mobility of the system.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA/análise , Gálio/química , Nanofios/química , Transistores Eletrônicos , Sequência de Bases , DNA/genética , Eletrodos , Humanos , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína Supressora de Tumor p53/genética
8.
Biosensors (Basel) ; 11(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356708

RESUMO

Paper-based biosensors are considered simple and cost-efficient sensing platforms for analytical tests and diagnostics. Here, a paper-based electrochemical biosensor was developed for the rapid and sensitive detection of microRNAs (miRNA-155 and miRNA-21) related to early diagnosis of lung cancer. Hydrophobic barriers to creating electrode areas were manufactured by wax printing, whereas a three-electrode system was fabricated by a simple stencil approach. A carbon-based working electrode was modified using either reduced graphene oxide or molybdenum disulfide nanosheets modified with gold nanoparticle (AuNPs/RGO, AuNPs/MoS2) hybrid structures. The resulting paper-based biosensors offered sensitive detection of miRNA-155 and miRNA-21 by differential pulse voltammetry (DPV) in only 5.0 µL sample. The duration in our assay from the point of electrode modification to the final detection of miRNA was completed within only 35 min. The detection limits for miRNA-21 and miRNA-155 were found to be 12.0 and 25.7 nM for AuNPs/RGO and 51.6 and 59.6 nM for AuNPs/MoS2 sensors in the case of perfectly matched probe-target hybrids. These biosensors were found to be selective enough to distinguish the target miRNA in the presence of single-base mismatch miRNA or noncomplementary miRNA sequences.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Biomarcadores , Técnicas Biossensoriais/métodos , Carbono , Dissulfetos/química , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Grafite , Humanos , Limite de Detecção , MicroRNAs , Molibdênio/química , Nanocompostos/química
9.
RSC Adv ; 10(71): 43585-43591, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-35519672

RESUMO

We report the simple synthesis of bismuthene nanosheets (BiNS) by ionic liquid assisted grinding exfoliation, followed by size selection sequential centrifugation steps for the first time. The exfoliation process results in the formation of self-assembled spherule-like superstructures with abundant edge sites, which are able to catalyze the oxygen reduction reaction (ORR) via a two-electron pathway, with a higher efficiency than the bulk Bismuth. We rationalize the enhanced ORR activity of the BiNS to: (i) the presence of 1 dimensional topological edge states, which provide strong conduction channels for electron hopping between the bismuth layers and (ii) the more active role of edge sites in facilitating O2 adsorption and dissociation of O-O bonds compared to the basal plane. The present study provides a pathway for employing 2D topological insulators as a new class of electrocatalysts for clean energy applications.

10.
Anal Chem ; 81(1): 36-42, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19046071

RESUMO

We demonstrate a rationale for using GaN nanowires (GaNNWs) in label-free DNA-sensing using dual routes of electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) measurements, employing a popular target DNA with anthrax lethal factor (LF) sequence. The in situ EIS reveals that both high surface area and surface band-bending in the nanowires, providing more binding sites and surface-enhanced charge transfer, respectively, are responsible for the enhanced sensitivity to surface-immobilized DNA molecules. The net electron-transfer resistance can be readily deconvoluted into two components because of the coexistence of two interfaces, GaN/DNA and DNA/electrolyte interfaces, in series. Interestingly, the former, decreasing with LF concentration (C(LF)), serves as a signature for the extent of hybridization, while the latter as a fingerprint for DNA modification. For PL-sensing, the band-edge emission of GaNNWs serves as a parameter for DNA modification, which quenches exponentially with C(LF) as the incident light is increasingly blocked from reaching the core nanowire by rapidly developing a UV-absorbing DNA sheath at high C(LF). Furthermore, successful application for detection of "hotspot" mutations, related to the human p53 tumor-suppressor gene, revealed excellent selectivity and specificity, down to picomolar concentration, even in the current unoptimized sensor design/condition, and in the presence of mutations and noncomplementary strands, suggesting the potential pragmatic application in complex clinical samples.


Assuntos
Antígenos de Bactérias/genética , Bacillus anthracis/genética , Toxinas Bacterianas/genética , Técnicas Biossensoriais/métodos , DNA Bacteriano/análise , Gálio/química , Nanofios/química , Materiais Biocompatíveis/química , DNA Bacteriano/química , DNA Bacteriano/genética , Impedância Elétrica , Medições Luminescentes/métodos , Sondas de Oligonucleotídeos , Análise Espectral/métodos
11.
ACS Appl Bio Mater ; 1(4): 1184-1194, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34996159

RESUMO

Developing novel simple and ultrasensitive strategies for detecting microRNAs (miRNAs) is highly desirable because of their association with early cancer diagnostic and prognostic processes. Here a new chronocoulometric sensor, based on semiconducting 2H MoS2 nanosheets (MoS2 NSs) decorated with a controlled density of monodispersed small gold nanoparticles (AuNPs@MoS2), was fabricated via electrodeposition, for the highly sensitive detection of miRNA-21. The size and interparticle spacing of AuNPs were optimized by controlling nucleation and growth rates through the tuning of deposition potential and Au precursor concentration and by getting simultaneous feedback from morphological and electrochemical activity studies. The sensing strategy, involved the selective immobilization of the thiolated capture probe DNA (CP) at AuNPs and hybridization of CP to a part of the miRNA target, whereas the remaining part of the target was complementary to a signaling nonlabeled DNA sequence that served to amplify the target upon hybridization. Chronocoulometry provided precise quantification of nucleic acids at each step of the sensor assay by interrogating [Ru(NH3)6]3+ electrostatically bound to phosphate backbones of oligonucleotides. A detailed and systematic optimization study demonstrated that the thinnest and smallest MoS2 NSs improved the sensitivity of the AuNP@MoS2 sensor, achieving an impressive detection limit of ≈100 aM, which is 2 orders of magnitude lower than that of a bare Au electrode and also enhanced the DNA-miRNA hybridization efficiency by 25%. Such an improved performance can be attributed to the controlled packing density of CPs achieved by their self-assembly on AuNPs, large interparticle density, small size, and intimate coupling between AuNPs and MoS2. Alongside the outstanding sensitivity, the sensor exhibited an excellent selectivity down to femtomolar concentrations, for discriminating a complementary miRNA-21 target in a complex system composed of different foreign targets including mismatched and noncomplementary miRNA-155. These advantages make our sensor a promising contender in the point of care miRNA sensor family for medical diagnostics.

12.
Sci Rep ; 7: 42235, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186190

RESUMO

Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

13.
ChemSusChem ; 9(4): 370-8, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26791424

RESUMO

A hierarchical carbon nanotube-polypyrrole (CNT-PPy) core-shell composite was fabricated by growing CNTs directly on carbon cloth (CC) as a skeleton followed by electropolymerization of PPy with controlled polymerization time. Direct fabrication of electroactive (CNT-PPy) materials on the flexible CC electrode could reduce the interfacial resistance between the electrode and electrolyte and improve the ion diffusion. The supercapacitor electrode based on optimized PPy/CNT-CC exhibits excellent electrochemical performance, with the highest gravimetric capacitance being roughly 1038 F g(-1) per active mass of PPy and up to 486.1 F g(-1) per active mass of the PPy/CNT composite. Notably, excellent flexibility and cycle stability up to 10 000 cycles with only 18 % capacitance loss was achieved. At the same time, the fabricated asymmetric supercapacitor (PPy/CNT-CC∥CNT-CC) shows the maximum power density of 10 962 W kg(-1) at an energy density of 3.9 Wh kg(-1) under the operating potential of 1.4 V. The overall high cycle stability and high performance of the fabricated PPy/CNT-CC flexible electrode is due to the novel binder-free direct growth process.


Assuntos
Nanotubos de Carbono/química , Polímeros/química , Pirróis/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Polimerização , Análise Espectral Raman
14.
ACS Appl Mater Interfaces ; 7(8): 4616-22, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25668597

RESUMO

Controlled dispersion of single-walled carbon nanotubes (SWCNTs) in common solvents is a challenging issue, especially for the rising need of low cost flexible transparent conducting films (TCFs). Utilizing conductive polymer as surfactant to facilitate SWCNTs solubility is the most successful pragmatic approach to such problem. Here, we show that dispersion of SWCNT with polymer significantly relies on the length of polymer side groups, which not only influences the diameter distribution of SWCNTs in solution, also eventually affects their effective TCF performance. Surfactants with longer side groups covering larger nanotube surface area could induce adequate steric effect to stabilize the wrapped SWCNTs against the nonspecific aggregation, as discerned by the optical and microscopic measurements, also evidenced from the resultant higher electrokinetic potential. This approach demonstrates a facile route to fabricate large-area SWCNTs-TCFs exhibiting high transmittance and high conductivity, with considerable uniformity over 10 cm × 10 cm.

15.
Biosens Bioelectron ; 70: 137-44, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25801954

RESUMO

We report the simultaneous electrochemical detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) on three dimensional (3D) unmodified 'as-grown' epitaxial graphene nanowall arrays (EGNWs). The 3D few layer EGNWs, unlike the 2D planar graphene, offers an abundance of vertically oriented nano-graphitic-edges that exhibit fast electron-transfer kinetics and high electroactive surface area to geometrical area (EAA/GA≈134%), as evident from the Fe(CN)6(3-/4-) redox kinetic study. The hexagonal sp(2)-C domains, on the basal plane of the EGNWs, facilitate efficient adsorption via spontaneous π-π interaction with the aromatic rings in DA and UA. Such affinity together with the fast electron kinetics enables simultaneous and unambiguous identification of individual AA, DA and UA from their mixture. The unique edge dominant EGNWs result in an unprecedented low limit of detection (experimental) of 0.033 nM and highest sensitivity of 476.2 µA/µM/cm(2), for UA, which are orders of magnitude higher than comparable existing reports. A reaction kinetics based modeling of the edge-oriented 3D EGNW system is proposed to illustrate the superior electro-activity for bio-sensing applications.


Assuntos
Biopolímeros/análise , Condutometria/instrumentação , Grafite/química , Imunoensaio/instrumentação , Nanopartículas/química , Compostos Orgânicos/análise , Biopolímeros/química , Misturas Complexas/análise , Misturas Complexas/química , Desenho de Equipamento , Análise de Falha de Equipamento , Microquímica/instrumentação , Nanopartículas/ultraestrutura , Compostos Orgânicos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
ACS Nano ; 7(2): 1333-41, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23273110

RESUMO

Band gap opening and engineering is one of the high priority goals in the development of graphene electronics. Here, we report on the opening and scaling of band gap in BN doped graphene (BNG) films grown by low-pressure chemical vapor deposition method. High resolution transmission electron microscopy is employed to resolve the graphene and h-BN domain formation in great detail. X-ray photoelectron, micro-Raman, and UV-vis spectroscopy studies revealed a distinct structural and phase evolution in BNG films at low BN concentration. Synchrotron radiation based XAS-XES measurements concluded a gap opening in BNG films, which is also confirmed by field effect transistor measurements. For the first time, a significant band gap as high as 600 meV is observed for low BN concentrations and is attributed to the opening of the π-π* band gap of graphene due to isoelectronic BN doping. As-grown films exhibit structural evolution from homogeneously dispersed small BN clusters to large sized BN domains with embedded diminutive graphene domains. The evolution is described in terms of competitive growth among h-BN and graphene domains with increasing BN concentration. The present results pave way for the development of band gap engineered BN doped graphene-based devices.

17.
J Phys Condens Matter ; 24(23): 235503, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22576101

RESUMO

Catalyst-free vertically aligned graphene nanoflakes possessing a large amount of high density edge planes were functionalized using nitrogen species in a low energy N(+) ion bombardment process to achieve pyridinic, cyanide and nitrogen substitution in hexagonal graphitic coordinated units. The evolution of the electronic structure of the functionalized graphene nanoflakes over the temperature range 20-800 °C was investigated in situ, using high resolution x-ray photoemission spectroscopy. We demonstrate that low energy irradiation is a useful tool for achieving nitrogen doping levels up to 9.6 at.%. Pyridinic configurations are found to be predominant at room temperature, while at 800 °C graphitic nitrogen configurations become the dominant ones. The findings have helped to provide an understanding of the thermal stability of nitrogen functionalities in graphene, and offer prospects for controllable tuning of nitrogen doping in device applications.

18.
Biosens Bioelectron ; 26(4): 1688-91, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20685105

RESUMO

The study demonstrates an electrochemical approach for direct sensing of L-Cysteine at gallium nitride nanowires (GaNNWs), a wide band gap semiconductor possessing 1-dimensional nanomaterial-specific high surface-sensitivity and unusually high surface-conductivity. Pristine GaNNWs can respond to L-Cysteine oxidation without any surface-modification: a unique advantage compared with other common electrodes. Cyclic voltammetric investigations on the effects of pH and potential-scan rate reveal an electrocatalytic oxidation of L-Cysteine controlled by the electroactive L-CyS(-) species. Advantages of direct L-Cysteine oxidation at surface-dominated GaNNWs electrodes can achieve an optimum sensitivity of 42 nA/µM with an experimental detection limit of 0.5 µM, over 0.5-75 µM dynamic range, under physiological condition (pH=7.4).


Assuntos
Técnicas Biossensoriais/métodos , Cisteína/análise , Nanofios , Técnicas Biossensoriais/estatística & dados numéricos , Técnicas Eletroquímicas , Eletrodos , Gálio , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Nanofios/ultraestrutura , Oxirredução , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA