Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1187279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205182

RESUMO

Lipids are a diverse class of biomolecules that have been implicated in cancer pathophysiology and in an array of immune responses, making them potential targets for improving immune responsiveness. Lipid and lipid oxidation also can affect tumor progression and response to treatment. Although their importance in cellular functions and their potential as cancer biomarkers have been explored, lipids have yet to be extensively investigated as a possible form of cancer therapy. This review explores the role of lipids in cancer pathophysiology and describes how further understanding of these macromolecules could prompt novel treatments for cancer.

2.
3.
Front Immunol ; 14: 1172931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180129

RESUMO

Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.


Assuntos
Neoplasias , Linfócitos T , Humanos , Neoplasias/patologia , Imunoterapia , Metabolismo Energético
4.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37345658

RESUMO

The combination of radiation therapy (RT) and immunotherapy has emerged as a promising treatment option in oncology. Historically, x-ray radiation (XRT) has been the most commonly used form of RT. However, proton beam therapy (PBT) is gaining recognition as a viable alternative, as it has been shown to produce similar outcomes to XRT while minimizing off-target effects. The effects of PBT on the antitumor immune response have only just begun to be described, and to our knowledge no studies to date have examined the effect of PBT as part of a combinatorial immunoradiotherapeutic strategy. Here, using a 2-tumor model of lung cancer in mice, we show that PBT in tandem with an anti-PD1 antibody substantially reduced growth in both irradiated and unirradiated tumors. This was accompanied by robust activation of the immune response, as evidenced by whole-tumor and single-cell RNA sequencing showing upregulation of a multitude of immune-related transcripts. This response was further significantly enhanced by the injection of the tumor to be irradiated with NBTXR3 nanoparticles. Tumors of mice treated with the triple combination exhibited increased infiltration and activation of cytotoxic immune cells. This triple combination eradicated both tumors in 37.5% of the treated mice and showed robust long-term immunity to cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Animais , Camundongos , Radioimunoterapia , Prótons , Neoplasias Pulmonares/radioterapia , Imunoterapia
5.
Front Immunol ; 13: 1033642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353620

RESUMO

The TGF-ß superfamily is a group of secreted polypeptides with key roles in exerting and regulating a variety of physiologic effects, especially those related to cell signaling, growth, development, and differentiation. Although its central member, TGF-ß, has been extensively reviewed, other members of the family-namely bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs)-have not been as thoroughly investigated. Moreover, although the specific roles of TGF-ß signaling in cancer immunology and immunotherapy resistance have been extensively reported, little is known of the roles of BMPs, activins, and GDFs in these domains. This review focuses on how these superfamily members influence key immune cells in cancer progression and resistance to treatment.


Assuntos
Ativinas , Proteínas Morfogenéticas Ósseas , Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA