Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2221-2228, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36043830

RESUMO

Black carbon (BC) is an important component of airborne fine particulate matter, with significant impacts on global climate change and human health. Taking Minhang District of Shanghai as the study area, a microaethalometer (MA200) and GPS were installed on the electric taxi to form a mobile observation platform to identify the spatial distribution and hot spots of atmospheric BC in urban environment. We analyzed the sources and influencing factors of BC. The results showed that the overall characteristics of the spatial distribution pattern of near surface atmospheric BC in Minhang District of Shanghai were high in the north and low in the south. The average BC concentration was (4.11±4.87) µg·m-3. The average concentrations of BC in working days and non-working days were (4.22±1.49) and (3.52±2.26) µg·m-3. The variability of BC concentration in the high value area was large, indicating that the increases of BC concentration in mobile observation were related to traffic accidents in the road section. In addition to human activities, large-scale dense vegetation might inhibit BC diffusion. The Absorption ngström Exponent (AAE) was (0.82±0.54), which was closer to that of fossil fuel combustion. The contributions of fossil fuel emissions, biomass combustion, and mixed sources to BC sources were 67.5%, 4.9% and 27.6%, respectively.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental/métodos , Combustíveis Fósseis/análise , Humanos , Material Particulado/análise , Fuligem/análise
2.
Huan Jing Ke Xue ; 42(6): 2668-2678, 2021 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-34032066

RESUMO

As an important component of atmospheric aerosols, black carbon (BC) has a great influence on the regional and global radiation balance, climate, and human health due to its small particle size, large specific surface area, and radiative forcing potential. Here, the spatio-temporal characteristics of atmospheric BC were investigated based on modern-era retrospective analysis for research and applications version 2 (MERRA-2) reanalysis data and ground observation data during 1980-2019 in Shanghai, a highly urbanized city in mainland China. The influences of local emissions and regional transmission on regional-scale BC concentrations were examined using the M-K trend test, backward trajectory analysis, and the potential source contribution function (PSCF). The results showed that:① MERRA-2 BC and ground observation datasets showed good consistency (R∈[0.68, 0.72]), indicating that MERRA-2 reanalysis data can be used to reveal long-term changes in ground-level atmospheric BC concentrations; ② Atmospheric BC concentrations in Shanghai over the past 40 years can be divided into three stages:a "low value" stage of slow growth[1980-1986, (1.75±0.17) µg·m-3], a relatively stable "median value" stage[1987-1999, (2.18 ±0.07) µg·m-3], and a fluctuating "high value" stage[2000-2019, (3.07±0.31) µg·m-3]. Seasonally, Shanghai's BC concentrations generally show a "U" pattern with low concentrations in summer and high concentrations in winter. As a result of black carbon emissions from marine diesel engines and other engines used for water transportation, a small peak also occurs in July; ③ The diagnostic quality ratio of air pollutants and the bivariate correlation analysis[R(BC-NO2)>R(BC-CO)>R(BC-SO2)] indicated that traffic emissions were the main sources of atmospheric BC in Shanghai, especially by heavy diesel vehicles; ④ The backward trajectory and PSCF analyses found that the air mass of Shanghai in summer was dominated by a clean sea breeze, accounting for 77.18%. In contrast, during the other seasons, more than 50% of the air mass came from the north. The potential source regions of atmospheric BC in Shanghai are mainly distributed in eastern China, expanding outwards and centering on the Yangtze River Delta, and the expansion direction is consistent with the directions of the backward trajectories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA